多年来药物学家为了增强紫杉醇的水溶性和靶向性持Word文件下载.docx

上传人:b****6 文档编号:19592161 上传时间:2023-01-08 格式:DOCX 页数:22 大小:412.70KB
下载 相关 举报
多年来药物学家为了增强紫杉醇的水溶性和靶向性持Word文件下载.docx_第1页
第1页 / 共22页
多年来药物学家为了增强紫杉醇的水溶性和靶向性持Word文件下载.docx_第2页
第2页 / 共22页
多年来药物学家为了增强紫杉醇的水溶性和靶向性持Word文件下载.docx_第3页
第3页 / 共22页
多年来药物学家为了增强紫杉醇的水溶性和靶向性持Word文件下载.docx_第4页
第4页 / 共22页
多年来药物学家为了增强紫杉醇的水溶性和靶向性持Word文件下载.docx_第5页
第5页 / 共22页
点击查看更多>>
下载资源
资源描述

多年来药物学家为了增强紫杉醇的水溶性和靶向性持Word文件下载.docx

《多年来药物学家为了增强紫杉醇的水溶性和靶向性持Word文件下载.docx》由会员分享,可在线阅读,更多相关《多年来药物学家为了增强紫杉醇的水溶性和靶向性持Word文件下载.docx(22页珍藏版)》请在冰豆网上搜索。

多年来药物学家为了增强紫杉醇的水溶性和靶向性持Word文件下载.docx

10μg/ml-1,在浓度为10μM时对微

管无聚合作用。

而紫杉醇对KB细胞的IC50为2.59×

10-3μg/ml-1,在10μM时对微管有聚合

作用。

从药理结果可以看出,目标化合物的细胞毒活性比紫杉醇差3个数量级以上,说明分子

表面静电势不是影响活性的关键因素。

紫杉醇的构效关系研究表明,分子北部基团(7,9,10位含氧基团)对活性影响不大[8],这

与我们的初步研究结果相同(9,10位含氧基团互换对活性无明显影响)。

从分子结构对比看,

目标分子的侧链处于14β-位而不是13α-位,并且缺乏紫杉醇相应的1位羟基,这可能是导致化

合物活性差的主要原因。

有关研究正在进一步进行中。

28  天然产物研究与开发Vo1.12 No.1

收稿日期:

1999-07-19

  紫杉醇(Taxol,1)〔1〕是近十多年来出现的治

疗晚期乳腺癌、卵巢癌等疗效最好的药物之一,现

已成为治疗这两种癌症的临床一线用药.它的作

用机理独特〔2〕、化学结构新颖复杂,已引起人们

的广泛关注.但紫杉醇也存在水溶性差、对某些癌

症无效、易产生多药耐受性等缺点.目前紫杉醇临

床用药只能靠从植物中直接提取,或由植物中含

量较高的10-deacetylbaccatinⅢ半合成获得.由

于该植物生长缓慢,且这两条途径都易造成自然

资源的破坏.因此,寻找高效低毒、抗瘤谱广、综合

性能好又不依赖自然资源的新一代紫杉醇类抗癌

药具有重要意义.

1 合成路线设计

SinenxanA(SI-A,2)〔3〕是由南方红豆杉愈创

组织培养得到的紫杉烷化合物(干重可达2%),

具有14β-含氧基团和与紫杉醇母核类似的骨架,

而无相应的1,7,9,13位含氧基团,为进行结构修

饰、寻找新的抗癌药提供了可以不依赖自然资源

的原料.因此,围绕SI-A母核进行了系统的结构

修饰,合成了一系列14β-侧链紫杉醇衍生物〔4~6〕.

同时作为对SI-A进行系统结构修饰研究的一部

分,还对其10位进行结构改造,考察10位基团的

极性变化、亲疏水性改变以及空间效应对活性的

影响,合成了10位为羰基、羟基、甲氧基乙酸酯、

苄氧基乙酸酯、羟乙酸酯等共6个新的14β-侧链

紫杉醇衍生

物.目标化合物的合成路线分别见图

1和图2.

从SI-A出发经7步反应可以顺利得到起始

原料(3)〔7〕.由于化合物(3)的4位羟基空间位阻

大于2位,在二环己基碳二亚胺(DCC)和4-吡咯

烷基吡啶(4-pyrrolidinopyridine,4-PP)作用下,选

择性苯甲酰化得到(4).在夺质子能力很强的

lithiumbis(trimethylsilyl)amide(LHMDS)作用

下,以乙酰氯作为酰化剂得到(5).用氢氧化钾水

解化合物(5)的10位乙酸酯,选择性不高,除得到

所需的化合物(6)外,还得到(7)〔6〕以及多羟基化

合物.用TES(三乙基氯硅)保护(6)的10位羟基,

随后水解14位乙酸酯得到化合物(9).在DCC和

4-二甲胺基吡啶(DMAP)作用下,(9)与侧链酸

(10)偶联后,用稀盐酸同时去除ee(乙氧基乙基)

和TES保护基得到目标化合物(13).(9)与用ee

保护的β-内酰胺侧链(11)偶联〔8〕,再用稀盐酸同

时去除ee和TES保护基则得到另一个目标化合

物(15).

a)PhCO2H,DCC,4-PP,PhMe,80℃;

b)LHMDS,THF,AcCl,0℃;

c)KOH,MeOH;

d)TESCl,imidazole,DMF,0℃;

e)KOH,MeOH;

f)10,DCC,DMAP,PhMe;

g)11,LHMDS,THF,0℃;

h)HCl,EtOH

Fig·

1 Thesyntheticroutefortargetcompounds(13)and(15)

  目标化合物(19),(22),(25),(26)的合成见

图2.由紫杉烷中间体(16)〔5〕出发,参照Holton的

方法〔9〕、用tetrapropylammoniumperruthenate

(TPAP)/N-methylmorpholineN-oxide(NMO)氧

化得到(17),(17)用稀盐酸脱去TES保护基后,

与带ee保护基的侧链酸(10)偶联,再用稀盐酸去

除ee得到目的物(19).中间体(16)直接进行酰化

后,采用合成(19)的类似方法,即先去除14位

TES保护基,再与侧链酸(10)偶联,最后脱去ee

得到化合物(22)和(25).不同之处在于改用四丁

基氟化胺(TBAF:

tetrabutylammoniumfluoride)去

除TES.由于用稀盐酸去除TES,反应时间长,常

常需要数天时间才能反应完全,而用TBAF仅需

几个小时,二者收率相当.以氢氧化钯为催化剂,

化合物(25)经常压氢化得到目的物(26).

191期刘瑞武等:

10位结构修饰14β-侧链紫杉醇衍生物的合成及其抗肿瘤活性

紫杉醇(paclitaxel)是治疗卵巢癌的一线药物,易引起骨

髓抑制、神经毒性、心脏毒性等不良反应,降低了紫杉醇临

床应用价值。

为了避免或减少紫杉醇在应用中产生的毒副作

用,国内外相关学者开展了实验室和临床的广泛研究。

尤其

是近五年来对紫杉醇的新剂型如乳剂、胶囊、包合物、脂质

体、纳米粒、凝胶、植入剂和药物释放支架等[1],给药方法如

静脉给药、腹腔给药、每周给药法等,以及联合用药等的研

究较多,至今已取得阶段性成果。

美国蒙大拿州立大学植物病理系化学家AndreStierle博

士[8]从短叶红豆杉的韧皮部分离到一株能产紫杉醇的

真菌Taxomycesandreanae。

紫杉醇产生菌的发现,为紫

杉醇资源提供了一条新途径。

从而,从植物内生菌中筛

选具有疗效的新型化合物[9]。

1 紫杉醇的药源保护

人工栽培和综合利用植物资源是紫杉醇药源保护的

要途径。

首先,依靠种子繁殖及扦插等无性繁殖方法,有计

划大批量培育红豆杉科植物的幼苗,是当前有效保护和再

资源的主要方法之一。

美国BMS公司在1991年已种植红

豆杉树400万株[5]。

我国的云南、湖南等地也开展了大片栽

培试验,云南已成功繁育了5万株红豆杉树,成活率达

94·

3%;

湖南已首次人工繁殖出红豆杉幼苗3000多株,移栽

大田长势良好[6]。

据笔者调查,近年,广西晖昂生化制药有

限公司在广西资源县等地进行曼地亚红豆杉引种实验并取

得成功,目前长势良好。

其次,综合利用红豆杉植物的嫩枝、

针叶,可节约天然资源。

在一项由美国NCI和美国FDA共

同资助的项目研究中,对欧洲几种不同红豆杉属植物的针叶

样品测定结果显示,许多种针叶样品的紫杉醇含量可与干燥

的短叶红豆杉树皮相当(约0·

01%),在美国不同地区栽培的

35种红豆杉新鲜针叶,至少有6种含量高于或等于干燥短叶

红豆杉树皮,此项目已提供了1·

362万公斤干枝叶供提取和

加工研究[5]。

最后,从非红豆杉属植物中寻找和分离紫杉

醇,将能很好地保护珍稀的红豆杉物种,拓展紫杉醇药源,又

能保护生态环境。

有研究报道[6]从一种常见的榛科植物榛

中提取紫杉醇和其类似物,提取出来的紫杉醇纯度符合美国

FDA制备针剂的要求,其化学性质与从红豆杉树皮中提取的

紫杉醇相一致。

化学全合成法,尚无用于临床

半合成法,等首次报道用10-去乙基-baccatinⅢ为原料半合成了紫杉

醇,1992年Holton等[12]报道了紫杉醇半合成路线。

10-去乙

基-baccatinⅢ从欧洲红豆杉的针叶分离出,其产率可达

1%,由于针叶再生能力强,为紫杉醇半合成提供了丰富的

原料。

半合成方法是目前世界上紫杉醇原料药提供的主要

途径,10-去乙基-baccatinⅢ在枝叶中的含量是紫杉醇的3倍

以上,与通过植物提取紫杉醇相比,半合成紫杉醇可以大大

地改善紫杉醇供应的短缺情况;

通过半合成,还可以使紫杉

醇的侧链具有更大的可变性,有可能获得活性更高的紫杉醇

衍生物[13]。

 内生真菌培养安德列菌Taxomycesandreanae

组织细胞培养 

代谢工程 

从红豆杉属植物中分离紫杉醇类似物,是寻找替代紫杉

醇的新化合物或半合成紫杉醇前体的有效方法,迄今为止已

从红豆杉树皮中分离出170多种紫杉醇类似物。

徐学民

等[24]从四川产云南红豆杉(T.yunnensis)的树皮中分得一

个具有较强生物活性的新紫杉醇烷类似物,命名为紫杉次碱

(Taxotine)。

经TDR掺入法测定该化合物对P388淋巴细胞

白血病DNA合成的抑制强度比平行操作的对照品紫杉醇大

5倍(紫杉次碱的IC501·

12mg/ml,紫杉醇的IC50为

4mg/ml)。

除从天然资源中分离新的有效的紫杉醇类似物外,合成

新的有效的紫杉醇类似物还可克服紫杉醇自身的缺陷,如解

决其水溶性问题。

斯坦福大学Wender[25]以蒎烯为原料合成

了一些紫杉醇类似物,并证实其中紫杉醇脱氧类似物对肿瘤

有较高细胞毒作用。

1988年法国Potie等在半合成紫杉醇过

程中,以10-去乙基-baccatinⅢ为原料合成了docetaxel,doc-

etaxel已由Rhone-PoulencRorer(RPR)公司开发生产,并于

1994年4月在墨西哥上市,用于治疗乳腺癌和非小细胞肿

瘤,随后RPR公司又向美国、日本、加拿大、瑞典、挪威、荷兰

申请上市,半合成docetaxel被认为是唯一能与紫杉醇相媲美

的抗癌药[26],成为紫杉醇的第二代产品。

在对紫杉醇耐药

的细胞中,docetaxel活性至少比紫杉醇高5倍,Ⅱ期临床试

验表明,对晚期复发性乳腺癌的有效率为25%,对耐铂卵巢

癌的有效率为35%[27-29]。

因此,寻找和研究新的有效的紫

杉醇类似物将成为开发抗癌药的新课题。

13 Ixempra(ixabepilone,伊沙匹隆)

Ixempra是一种类似紫杉醇促使微管蛋白聚合

并且抑制微管解聚活性的埃坡霉素(epothilones)类

抗肿瘤新药。

与紫杉醇相比,埃坡霉素类抗肿瘤药

具有抗肿瘤活性更强、水溶性好、结构简单而易于化

学合成和结构衍生化、对具有耐药性肿瘤细胞杀伤

性强、无紫杉醇细胞内毒素活性不良反应等优点,有

望成为比紫杉醇更有效的抗肿瘤药物。

本品单药治

疗蒽环糖苷类抗生素、紫杉烷衍生物和卡培他滨治

疗无效的转移性或局部进展的晚期乳腺癌,以及与

卡培他滨联用治疗蒽环糖苷类抗生素和紫杉烷衍生

物无效的转移性或局部进展的晚期乳腺癌。

Ixem-

pra的费用为每人每年1.84~2.30万美元。

预计到

2012年,Ixempra的全球销售额将达到5亿美元。

FDA对Ixempra的批准基于2项多中心、多国籍临

床试验的数据,这两项试验共纳入878例,评价了

Ixempra单药或与联用治疗无效的转移性或局部进

展的晚期乳腺癌的有效性和安全性。

结果Ixempra

与卡培他滨联用患者的肿瘤缩小或不增长的平均时

间为5.7个月(95%CI,4.8~6.7个月),而单独使

用卡培他滨的患者仅为4.1个月(95%CI,3.1~

3个月)(P<

0.0001)[12]。

综上所述,C13侧链对紫杉醇抗癌活性的重要作用勿庸

置疑。

对C2′-羟基的研究表明,该基团虽不是活性构象决定

因素,但其作用却不容忽视。

其原因一般认为是C2′-羟基作

为氢键供体直接与微管蛋白的一个残基结合,起到了稳定分

子与微管结合的作用。

而对C3′取代基的研究存在两种观

点,一种认为C3′取代基是决定分子活性的关键基团。

第二

种则认为无论是C3′-苯环还是C3′-N端取代得到的C3′取代

基,其与受体的结合对分子抗癌活性影响都不大。

这两种观

点还需化学家进一步的实验验证和理论探讨。

另一方面,某

些结构修饰,如在C2′和C3′位连接较大取代基或增大C2′所

在碳原子、C2′所连R基团及C3′所连第1个N原子的负电

荷密度也有助于提高抗癌活性。

2 紫杉醇的制剂学研究

紫杉醇是四环三萜类化合物,通过诱导与促进

微管蛋白聚合,装配与稳定微管阻止肿瘤细胞生

长,对卵巢癌、乳腺癌、头颈部癌、非小细胞性肺癌

及前列腺癌疗效显著,紫杉醇几乎不溶于水,这给

临床运用带来了诸多不便。

目前临床用制剂以聚

氧乙烯蓖麻油-无水乙醇溶液作为溶剂。

但该制

剂使用时存在很多问题。

如临床使用前的稀释易

使紫杉醇结晶析出,紫杉醇在溶液中易与玻璃或者

塑料的表面发生非特异性结合导致浓度降低等[9]。

因此,有必要探索开发新的紫杉醇给药系统。

陈永法[10]等人通过制备紫杉醇冻干纳米乳,

研究了其体外理化性质。

研究以外观和重分散性

为指标,对紫杉醇冻干纳米乳所使用的冻干保护剂

进行了筛选,考察了纳米乳滴的形态,粒径和电位

以及制剂的含量和有关物质,并对最优处方进行了

加速稳定试验。

结果表明,选用甘露醇作为冻干保

护剂较好,甘氨酸可提高冻干纳米乳的外观和重分

散性能。

紫杉醇冻干纳米乳加入10mL0.9%NaCl

溶液振摇1分钟后变为带蓝色乳光的均一体系。

冻干前后纳米乳的形态,粒径和电位变化不大,表

明冻干保护剂能起到较好的效果。

紫杉醇冻干纳

米乳60℃加速试验结果表明,10d后制剂外观和

重分散性能良好,含量为标示量的98.36%,有关

物质为0.81%。

上述实验结果表明,紫杉醇的纳

多年来药物学家为了增强紫杉醇的水溶性和靶向性,持

续对其剂型进行研究,目前常采用的有:

紫杉醇酯质体,紫

杉醇微球,2-羟丙基-β-环糊精包合物,紫杉醇聚合物胶囊

以及紫杉醇纳米粒等。

在这些剂型中以紫杉醇纳米粒最好、

最完善。

现将紫杉醇纳米粒作一介绍。

2004年Feng等[2]从添加各种天然乳化剂如胆固醇、磷脂、

维生素E,通过“抽提-蒸发”技术制备出聚乳酸-羟基乙酸

纳米粒,直径为0.1~100nm。

其外形用扫描电镜和原子显微

镜测定,用HPLC法测定封包率及释放动力学。

由于制成的纳

米粒的直径小,分布范围窄而使其包封率达100%,完全可以

控制释放动力学。

将HT-29癌细胞系与纳米粒共同培养24h,

由于纳米粒具有表面反应活性高、表面活性中心多、吸附能

力强等优点。

使癌细胞死亡率比紫杉醇普通注射剂高13倍。

目前临床治疗卵巢癌的标准化疗方案是:

紫杉醇

175mg/m2+卡铂(carboplatin),静脉给药,每周3次,共6

次。

但静脉给药毒副作用较多,常见的有:

骨髓抑制、过敏

反应、神经毒等。

为了减轻毒副作用进行了许多有关给药途

径的研究。

2005年Goffin等[5]研究认为较好的是静脉、腹腔联

合给药。

因为腹腔给药主要的问题是药物通过表面渗透进入

肿瘤的深度很有限,一般仅数毫米,因此药物不能与肿瘤很

好接触而发挥治疗作用。

用腹腔注射给药仅适用于肿瘤直径

小于1cm残留灶结节,因此仅适用于术后卵巢癌的二线治疗。

紫杉醇现已

用于临床治疗晚期乳腺癌、卵巢癌、非小细胞肺

癌等,它的类似物taxotere

(2)也于1996年5月

被FDA批准临床治疗晚期乳腺癌。

但它们都

存在一些缺点,比如水溶性差、存在多药耐受

性、对某些癌症无效等。

因此,寻找高效低毒、

抗瘤谱广、综合性能好的新一代紫杉醇类抗癌

药成为新的研究热点,但早期的结构修饰工作

主要集中在侧链的改造上,近期的工作也大多

限于紫杉醇的母核上基团的修饰,对其它结构

类型的紫杉烷结构修饰研究较少。

  化合物7有2个乙酯基,为选择性地水解

7的14β-乙酯得到8并避免进一步水解,经仔

细考察发现,化合物8在甲醇中溶解度较低,选

用尽量少的甲醇作溶剂,用K2CO3水解7可得

到较高收率(69%)的8。

以二环己基碳二亚胺

(DCC)为缩合剂,在4-Pyrrolidinopyridine(4-

PP)作用下,8与带保护基Cbz的侧链酸偶联,

可选择性地酯化14位羟基得到化合物9。

文献方法[8],在80℃和DCC,4-PP作用下,9与

苯甲酸或间氯苯甲酸反应可以顺利得到预期的

产物10a和10b。

但9与正戊酸或苯乙酸等脂

肪酸在同样条件下反应却得到了2位和4位双

酯化的产物,这可能是因为脂肪酸与DCC形成

的加成物的立体位阻相对较小,并且亲电反应

活性强于芳香酸与DCC形成的加成物,在高温

和夺质子能力很强的4-PP的存在下难以达到

选择性地酯化2位的目的。

改用正戊酸酐或苯

乙酸酐作酰化剂,在温和的条件下[室温,4-二

甲氨基吡啶(DMAP)]可以得到产物10c和

10d,收率分别为92·

5%和79·

3%。

10a~10d

经中压催化氢解生成游离胺,然后用苯甲酸酐

或Ditertbutyldicarbonate[(BOC)2O]酰化得到

目标物11a~11e。

对10a~10d的4位羟基乙

酰化条件进行了详细考察,尝试了多种反应条

件,最终获得成功,以乙酸酐为酰化剂、甲苯为

溶剂,在DMAP作用下可得到12a~12d,12b~

12d,随后进行中压催化氢解和酰化得到产物

13b~13d。

13a和13e的合成见另文报道[9]。

合成化合物10~13的各步反应收率见表1。

最终化合物均经1HNMR和FAB-MS鉴定。

以化合物4和紫杉醇作对照,将11a~

11e,13a~13e共10个化合物进行了微管聚合

试验(浊度测定法)和体外肿瘤细胞抑制试验

(MTT法)。

所有化合物在浓度为10

μmol·

L-1时,均无促进微管聚合活性。

在体外

肿瘤细胞抑制试验中,大部分化合物对口腔上

皮细胞(KB)、卵巢癌细胞(A2780)及结肠癌细

胞(HCT-8)3种细胞株都有边缘活性,只有

13d对3种细胞株的IC50均大于10μg·

ml-1,

试验结果见表2。

·

912·

药学学报ActaPharmaceuticaSinica1998,33(12)∶910~918

  从表2可看出,14β-侧链紫杉醇衍生物的

活性与紫杉醇相比相差甚远,更令人意外的是,

它们的活性与对照化合物4在同一个数量级甚

至更差。

紫杉醇衍生物构效关系表明,4-去乙

酰紫杉醇的活性低于紫杉醇3个数量级[10];

紫杉醇的2位苯甲酸酯以间氯苯甲酸酯取代

后,细胞毒性增强700倍[8];

以环己基甲酸酯代

替后,细胞毒活性降低几十倍[11,12]。

与紫杉醇

衍生物相比,这类14β-侧链紫杉醇的构效关系

有如下差异:

1)4位羟基化合物与4位乙酸酯

比较,4位羟基化合物活性好(11c与13c活性

相当);

2)2位基团的改变对活性无明显影响,

紫杉醇是一种具有广谱抗癌活性的化合物,是近十多年

来出现的治疗晚期乳腺癌、卵巢癌等疗效最好的药物之一,

现已成为治疗这两种癌症的临床一线用药,它具有独特结构

的二萜类成分,它的骨架被命名为紫杉烷(taxane)。

由于其

独特的作用机制,化学结构新颖复杂和对耐药细胞也有效。

已引起人们的广泛关注。

但紫杉醇也存在水溶性差,对某些

癌症无效,易产生多药耐受性等缺点。

现就紫杉醇的药理作

用及近期研究进展作一综述[2]。

将小分子可溶性基团与紫杉醇的2'

-或7-羟基连

接,可形成酯类衍生物,如琥珀酸酯、磺酸、氨基酸衍

生物

[3]

,这样可使其亲水性大大提高。

具体过程如下:

紫杉醇与琥珀酐在不同反应条件下可产生2'

-琥珀

酰紫杉醇(室温)和2'

7-二琥珀酰紫杉醇(85℃),分别加

入等量氢氧化钠,蒸发或冻干除去溶剂后即得两种琥珀

酸酯的钠盐,溶解度分别提高到1、3mg/mL

[4]

琥珀酰

紫杉醇、异丁基氯甲酸盐与牛磺酸四丁基铵盐(或2-氨

基丙磺酸)的反应得到的紫杉醇磺酸钠盐,其分配系数

(C

/C

辛醇

)分别是紫杉醇的191和118倍,水溶性大幅提

[5]

而2'

-(N,N-二甲基甘氨酰)紫杉醇及2'

-[3-(N,N-二乙

氨)丙酰]紫杉醇的甲磺酸盐,与原药相比,均具有较高

水溶性(5mg/mL的药物水溶液依然保持澄清,至少保持

4小时不析出)

[6]

还可利用核糖核苷二磷酸还原酶设计紫杉醇前药,

以提高紫杉醇亲水性。

该酶与核苷酸增多有关,它通

过将核苷酸2'

-OH替

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 农林牧渔 > 林学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1