计算机控制技术试验连续系统PID参数整定Word文件下载.docx

上传人:b****6 文档编号:19564442 上传时间:2023-01-07 格式:DOCX 页数:9 大小:141.99KB
下载 相关 举报
计算机控制技术试验连续系统PID参数整定Word文件下载.docx_第1页
第1页 / 共9页
计算机控制技术试验连续系统PID参数整定Word文件下载.docx_第2页
第2页 / 共9页
计算机控制技术试验连续系统PID参数整定Word文件下载.docx_第3页
第3页 / 共9页
计算机控制技术试验连续系统PID参数整定Word文件下载.docx_第4页
第4页 / 共9页
计算机控制技术试验连续系统PID参数整定Word文件下载.docx_第5页
第5页 / 共9页
点击查看更多>>
下载资源
资源描述

计算机控制技术试验连续系统PID参数整定Word文件下载.docx

《计算机控制技术试验连续系统PID参数整定Word文件下载.docx》由会员分享,可在线阅读,更多相关《计算机控制技术试验连续系统PID参数整定Word文件下载.docx(9页珍藏版)》请在冰豆网上搜索。

计算机控制技术试验连续系统PID参数整定Word文件下载.docx

只要积分时间常数Ti足够大,PI控制器对系统的不利影响可大为减小。

PI控制器主要用来改善控制系统的稳态性能。

在串联校正中,PID控制器增加了一个位于原点的开环极点,和两个位于s左半平面的开环零点。

除了具有PI控制器的优点外,还多了一个负实零点,动态性能比PI更具有优越性。

通常应使积分发生在低频段,以提高系统的稳态性能,而使微分发生在中频段,以改善系统的动态性能。

PID控制器传递函数为

,注意工程PID控制器仪表中比例参数整定常用比例度

.

三、实验内容

(1)Ziegler-Nichols——反应曲线法

反应曲线法适用于对象传递函数可以近似为

的场合。

先测出系统处于开环状态下的对象动态特性(即先输入阶跃信号,测得控制对象输出的阶跃响应曲线),如图1所示,然后根据动态特性估算出对象特性参数,控制对象的增益K、等效滞后时间L和等效时间常数T,然后根据表1中的经验值选取控制器参数。

图1控制对象开环动态特性

表1反应曲线法PID控制器参数整定

控制器类型

比例度δ%

比例系数Kp

积分时间Ti

微分时间Td

P

KL/T

T/KL

PI

1.1KL/T

0.9T/KL

L/0.3

PID

0.85KL/T

1.2T/KL

2L

0.5L

【例1】已知控制对象的传递函数模型为:

试设计PID控制器校正,并用反应曲线法整定PID控制器的Kp、Ti和Td,绘制系统校正后的单位阶跃响应曲线,记录动态性能指标。

【解】1)求取被控制对象的动态特性参数K、L、T。

num=10;

den=conv([1,1],conv([1,3],[1,5]));

G=tf(num,den);

step(G);

k=dcgain(G)

图2控制对象开环阶跃响应曲线

程序运行后,得到对象的增益K=0.6667,阶跃响应曲线如图2所示,在曲线的拐点处作切线后,得到对象待定参数;

等效滞后时间L=0.293s,等效时间常数T=2.24-0.293=1.947s。

2)反应曲线法PID参数整定

k=0.6667;

L=0.293;

T=1.947;

Kp=1.2*T/(k*L);

Ti=2*L;

Td=0.5*L;

Kp,Ti,Td,

s=tf('

s'

);

Gc=Kp*(1+1/(Ti*s)+Td*s);

GcG=feedback(Gc*G,1);

step(GcG)

 

运行程序,观察结果并讨论结果,讨论结果填写至空白处。

1、稳定性:

两种方法均趋于稳定;

2、误差:

第一种静态误差较大,大约为0.3,而第二种没有静态误差;

3、快速性:

第二种的响应速度要比第一种快;

4、调整时间:

第二种的调整时间较长,第一种比第二种较快达到稳定状态。

【例2】已知工程控制系统的被控广义对象为一个带延迟的惯性环节,其传递函数为:

G0(s)=

试分别用P、PI、PID三种控制器校正系统,并分别整定参数,比较三种控制器作用效果。

【解】1)根据反应曲线法整定参数

由传递函数可知系统的特性参数:

K=8,T=360s,L=180s,可得:

P控制器:

Kp=0.25

PI控制器:

Kp=0.225,Ti=594s

PID控制器:

Kp=0.3,Ti=360s,Td=90s。

2)作出校正后系统的单位阶跃响应曲线,比较三种控制器作用效果。

因为对于具有时滞对象的系统,不能采用feedback和step等函数进行反馈连接来组成闭环系统和计算闭环系统阶跃响应,因此采用simulink软件仿真得出单位响应曲线,系统结构图如图6-28所示。

由于本系统滞后时间较长,故仿真时间设置为3000s,三种控制器分别校正后系统的单位阶跃响应曲线如图6-29所示。

图3系统Simulink结构图

测量其动态性能指标。

分析结果并讨论。

1、PID控制

2、PI控制

3、P控制

三种控制对比:

结论:

三种控制器相比,

1、在快速性上:

PID较快响应;

2、PID、PI控制没有静态误差,而P控制有静态误差;

(2)Ziegler-Niehols——临界比例度法

临界比例度法适用于已知对象传递函数的场合,用系统的等幅振荡曲线来整定控制器的参数。

先使系统(闭环)只受纯比例作用,将积分时间调到最大,微分时间调到最小(Td=0),而将比例增益K的值调到较小值,然后逐渐增大K值,直到系统出现等幅振荡的临界稳定状态,此时比例增益的K作为临界比例

,等幅振荡周期为临界周期

,临界比例度为δk=

x100%。

根据表2中的经验值课整定PID控制器的参数。

表2临界比例度法PID控制器参数整定

Kp

Ti

Td

0.5Km

0.45Km

Tm/12

0.6Km

0.5Tm

0.125Tm

【范例6-9】已知被控对象传递函数为

试用临界比例度法整定PID控制器参数,绘制系统的单位响应曲线,并与反应曲线法比较。

【解】1)先求出控制对象的等幅振荡曲线,确定

k=10;

z=[];

p=[-1,-3,-5];

Go=zpk(z,p,k);

G=tf(Go);

forKm=0:

0.1:

10000

Gc=Km;

syso=feedback(Gc*G,1);

p=roots(syso.den{1});

pr=real(p);

prm=max(pr);

pro=find(prm>

=-0.001);

n=length(pro);

ifn>

=1

break

end;

end

step(syso,0:

0.001:

3);

图3控制系统等副振荡曲线

程序运行后可得Km=19.2,临界稳定状态的等幅振荡曲线如图3所示。

从图中测得两峰值之间的间隔周期即为临界周期

=2.07-0.757=1.313s

2)整定

,并分析结果。

Km=19.2;

Tm=1.313;

Kp=0.6*Km;

Ti=0.5*Tm;

Td=0.125*Tm;

sys=feedback(Gc*G,1);

step(sys)

理解并运行程序,讨论结果。

PID整定:

经比较,PID控制要比其他两种稳定,快速性较好且没有静态误差。

讨论如下问题:

1)比较P、PI和PID三种控制器对系统的校正效果,总结它们的优缺点及应用场合。

P控制的调整时间要小于PID及PI控制,不过有一定的静态误差;

PI控制没有静态误差,但快速性较差;

PID控制是三种控制中最理想的控制,它响应速度较快,稳定性较好。

P控制器主要应用于减少静态误差的场合;

PID、PI控制器主要用来改善控制系统的稳态性能。

2)如何动态地改进PID参数的整定?

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 艺术

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1