有限元软件历史Word文档下载推荐.docx

上传人:b****5 文档编号:19518975 上传时间:2023-01-07 格式:DOCX 页数:9 大小:26.12KB
下载 相关 举报
有限元软件历史Word文档下载推荐.docx_第1页
第1页 / 共9页
有限元软件历史Word文档下载推荐.docx_第2页
第2页 / 共9页
有限元软件历史Word文档下载推荐.docx_第3页
第3页 / 共9页
有限元软件历史Word文档下载推荐.docx_第4页
第4页 / 共9页
有限元软件历史Word文档下载推荐.docx_第5页
第5页 / 共9页
点击查看更多>>
下载资源
资源描述

有限元软件历史Word文档下载推荐.docx

《有限元软件历史Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《有限元软件历史Word文档下载推荐.docx(9页珍藏版)》请在冰豆网上搜索。

有限元软件历史Word文档下载推荐.docx

Bathe的著作丰厚,结合公布的源代码,让后来者获益匪浅,让人敬佩。

DavidHibbitt是PedroMarcal在Brown的博士生,Hibbitt在1972年与Karlsson和Sorensen共同建立HKS公司,推出了Abaqus软件。

有人在比较ADINA和Abaqus的时候认为,ADINA的技术更先进求解能力更强大,只是其商业化程度低,前后处理能力差。

Abaqus凭借强大的技术、出色的前后处理和可拓展的二次开发功能,稳占高校和研究所的市场,论文发表数量多。

JohnSwanson博士在Westinghouse公司为核能应用方面发展了一个非线性有限元程序(主要是关注非线性材料),于1970年创建SASI(SwansonAnalysisSystem,Inc)公司,后来重组更名为ANSYS公司,ANSYS是著名的多物理材料非线性有限元软件,通过并购发展迅速壮大,模块越来越多,商业化程度和市场占有率很高。

Wilkins(1964)在DOE实验室的工作强烈地影响了早期的显式有限元方法,Costantino(1967)在芝加哥的IIT研究院开发了可能是第一个显式有限元程序。

显式有限元技术经过发展和积累迎来了其里程碑式的工作。

在美国LawrenceLivermore国家实验室的JohnHallquist主持下1975年开始为核武器弹头设计开发分析工具,他吸取了前面许多人的成果,并且与Berkeley的研究员包括JerryGoundreau,BobTaybor,TomHughes和JuanSimo等紧密交流合作,在他的令人敬畏的编程效率作用下,次年发布DYNA程序。

后经过扩充和改进,得到美国能源部的大力资助和ANSYS,MSC,ETA等著名公司的加盟。

在20世纪80年代,DYNA程序首先被法国ESI公司商业化,命名为PAM-CRASH。

1988年,JohnHallquist创建LSTC(LivermoreSoftwareTechnologyCorporation公司,发行和扩展DYNA程序商业化版本LS-DYNA。

同样是1988年,MSC在DYNA3D的框架下开发了MSC.Dyna并于1990年发布第一个版本,另外在1989年收购荷兰的流体软件公司PISCES,将DYNA的Lagrange格式的FEM算法和PISCES的Euler格式的FVM及流体-结构耦合算法充分融合后于1993年发布了以强大的ALE算法而著名的MSC.Dytran。

其后MSC.Dytran一直着力在单元库、数据结构、前后处理等方面是修改使其与MSC.Nastran取得完全一致,其技术领先的地位开始丧失。

2003年MSC与LSTC达成全面合作的协议,将LS-DYNA最新版的程序完全集入MSC.Dytran中。

MSC在1999年收购Marc之后开始了将Nastran,Marc,Dytran完全融合的工作,并于2006发布多物理平台MD.Nastran,但就目前的情况来看还有很长的路要走。

PAM-CRASH和LS-DYNA在发展和完善了自己的ALE算法之后更引进了先进的无网格技术,PAM-CRASH,LS-DYNA以及AUTODYN(高速瞬态动力分析软件,原为CenturyDynamics公司,后被ANSYS收购,已被植入ANSYS11)均包含了SPH算法,其中AUTODYN的SPH算法支持各向异性材料,LS-DYNA另外包含EFG算法。

(end)

FEA的发展历程

  

  有限元方法的理论和程序主要来自各个高校和实验室,早期有限元的主要贡献来自于Berkeley大学。

  位于洛杉矶的MSC公司自1963创立并开发了结构分析软件SADSAM,在1966年NASA招标项目中参与了Nastran的开发。

  第一批非线性有限元方法的主要贡献者有Argyris(1965),Marcal和King(1967),其中PedroMarcal毕业于Berkeley大学,任教于Brown大学,于1969年创建了第一家非线性有限元软件公司MARC公司,在1999年被MSC公司收购。

  K.J.Bathe是EdWilson在Berkeley的学生,后来在MIT任教,期间他在NONSAP的基础上发表了著名的非线性求解器ADINA(AutomaticDynamicIncrementalNonlinearAnalysis),其源代码因为长时期广泛流传而容易获得。

  DavidHibbitt是PedroMarcal在Brown的博士生,Hibbitt在1972年与Karlsson和Sorensen共同建立HKS公司,推出了Abaqus软件。

  JohnSwanson博士在Westinghouse公司为核能应用方面发展了一个非线性有限元程序(主要是关注非线性材料),于1970年创建SASI(SwansonAnalysisSystem,Inc)公司,后来重组更名为ANSYS公司,ANSYS是著名的多物理材料非线性有限元软件,通过并购发展迅速壮大,模块越来越多,商业化程度和市场占有率很高。

  Wilkins(1964)在DOE实验室的工作强烈地影响了早期的显式有限元方法,Costantino(1967)在芝加哥的IIT研究院开发了可能是第一个显式有限元程序。

  显式有限元技术经过发展和积累迎来了其里程碑式的工作。

  在20世纪80年代,DYNA程序首先被法国ESI公司商业化,命名为PAM-CRASH。

  其后MSC.Dytran一直着力在单元库、数据结构、前后处理等方面是修改使其与MSC.Nastran取得完全一致,其技术领先的地位开始丧失。

  PAM-CRASH和LS-DYNA在发展和完善了自己的ALE算法之后更引进了先进的无网格技术,PAM-CRASH,LS-DYNA以及AUTODYN(高速瞬态动力分析软件,原为CenturyDynamics公司,后被ANSYS收购,已被植入ANSYS11)均包含了SPH算法,其中AUTODYN的SPH算法支持各向异性材料,LS-DYNA另外包含EFG算法。

有限元分析的发展趋势

近年来随着计算机技术的普及和计算速度的不断提高,有限元分析在工程设计和分析中得到了越来越广泛的重视,已经成为解决复杂的工程分析计算问题的有效途径。

1965年“有限元”这个名词第一次出现,到今天有限元在工程上得到广泛应用,经历了三十多年的发展历史,理论和算法都已经日趋完善。

有限元的核心思想是结构的离散化,就是将实际结构假想地离散为有限数目的规则单元组合体,实际结构的物理性能可以通过对离散体进行分析,得出满足工程精度的近似结果来替代对实际结构的分析,这样可以解决很多实际工程需要解决而理论分析又无法解决的复杂问题。

近年来随着计算机技术的普及和计算速度的不断提高,有限元分析在工程设计和分析中得到了越来越广泛的重视,已经成为解决复杂的工程分析计算问题的有效途径,现在从汽车到航天飞机几乎所有的设计制造都已离不开有限元分析计算,其在机械制造、材料加工、航空航天、汽车、土木建筑、电子电器,国防军工,船舶,铁道,石化,能源,科学研究等各个领域的广泛使用已使设计水平发生了质的飞跃,主要表现在以下几个方面:

增加产品和工程的可靠性;

在产品的设计阶段发现潜在的问题

经过分析计算,采用优化设计方案,降低原材料成本

缩短产品投向市场的时间

模拟试验方案,减少试验次数,从而减少试验经费

国际上早在60年代初就开始投入大量的人力和物力开发有限元分析程序,但真正的CAE软件是诞生于70年代初期,而近15年则是CAE软件商品化的发展阶段,CAE开发商为满足市场需求和适应计算机硬、软件技术的迅速发展,在大力推销其软件产品的同时,对软件的功能、性能,用户界面和前、后处理能力,都进行了大幅度的改进与扩充。

这就使得目前市场上知名的CAE软件,在功能、性能、易用性﹑可靠性以及对运行环境的适应性方面,基本上满足了用户的当前需求,从而帮助用户解决了成千上万个工程实际问题,同时也为科学技术的发展和工程应用。

做出了不可磨灭的贡献。

目前流行的CAE分析软件主要有NASTRAN、ADINA、ANSYS、ABAQUS、MARC、MAGSOFT、COSMOS等。

MSC-NASTRAN软件因为和NASA的特殊关系,在航空航天领域有着很高的地位,它以最早期的主要用于航空航天方面的线性有限元分析系统为基础,兼并了PDA公司的PATRAN,又在以冲击、接触为特长的DYNA3D的基础上组织开发了DYTRAN。

近来又兼并了非线性分析软件MARC,成为目前世界上规模最大的有限元分析系统。

ANSYS软件致力于耦合场的分析计算,能够进行结构、流体、热、电磁四种场的计算,已博得了世界上数千家用户的钟爱。

ADINA非线性有限元分析软件由著名的有限元专家、麻省理工学院的K.J.Bathe教授领导开发,其单一系统即可进行结构、流体、热的耦合计算。

并同时具有隐式和显式两种时间积分算法。

由于其在非线性求解、流固耦合分析等方面的强大功能,迅速成为有限元分析软件的后起之秀,现已成为非线性分析计算的首选软件。

纵观当今国际上CAE软件的发展情况,可以看出有限元分析方法的一些发展趋势:

1、与CAD软件的无缝集成当今有限元分析软件的一个发展趋势是与通用CAD软件的集成使用,即在用CAD软件完成部件和零件的造型设计后,能直接将模型传送到CAE软件中进行有限元网格划分并进行分析计算,如果分析的结果不满足设计要求则重新进行设计和分析,直到满意为止,从而极大地提高了设计水平和效率。

为了满足工程师快捷地解决复杂工程问题的要求,许多商业化有限元分析软件都开发了和著名的CAD软件(例如Pro/ENGINEER、Unigraphics、SolidEdge、SolidWorks、IDEAS、Bentley和AutoCAD等)的接口。

有些CAE软件为了实现和CAD软件的无缝集成而采用了CAD的建模技术,如ADINA软件由于采用了基于Parasolid内核的实体建模技术,能和以Parasolid为核心的CAD软件(如Unigraphics、SolidEdge、SolidWorks)实现真正无缝的双向数据交换。

2、更为强大的网格处理能力有限元法求解问题的基本过程主要包括:

分析对象的离散化、有限元求解、计算结果的后处理三部分。

由于结构离散后的网格质量直接影响到求解时间及求解结果的正确性与否,近年来各软件开发商都加大了其在网格处理方面的投入,使网格生成的质量和效率都有了很大的提高,但在有些方面却一直没有得到改进,如对三维实体模型进行自动六面体网格划分和根据求解结果对模型进行自适应网格划分,除了个别商业软件做得较好外,大多数分析软件仍然没有此功能。

自动六面体网格划分是指对三维实体模型程序能自动的划分出六面体网格单元,现在大多数软件都能采用映射、拖拉、扫略等功能生成六面体单元,但这些功能都只能对简单规则模型适用,对于复杂的三维模型则只能采用自动四面体网格划分技术生成四面体单元。

对于四面体单元,如果不使用中间节点,在很多问题中将会产生不正确的结果,如果使用中间节点将会引起求解时间、收敛速度等方面的一系列问题,因此人们迫切的希望自动六面体网格功能的出现。

自适应性网格划分是指在现有网格基础上,根据有限元计算结果估计计算误差、重新划分网格和再计算的一个循环过程。

对于许多工程实际问题,在整个求解过程中,模型的某些区域将会产生很大的应变,引起单元畸变,从而导致求解不能进行下去或求解结果不正确,因此必须进行网格自动重划分。

自适应网格往往是许多工程问题如裂纹扩展、薄板成形等大应变分析的必要条件。

3、由求解线性问题发展到求解非线性问题随着科学技术的发展,线性理论已经远远不能满足设计的要求,许多工程问题如材料的破坏与失效、裂纹扩展等仅靠线性理论根本不能解决,必须进行非线性分析求解,例如薄板成形就要求同时考虑结构的大位移、大应变(几何非线性)和塑性(材料非线性);

而对塑料、橡胶、陶瓷、混凝土及岩土等材料进行分析或需考虑材料的塑性、蠕变效应时则必须考虑材料非线性。

众所周知,非线性问题的求解是很复杂的,它不仅涉及到很多专门的数学问题,还必须掌握一定的理论知识和求解技巧,学习起来也较为困难。

为此国外一些公司花费了大量的人力和物力开发非线性求解分析软件,如ADINA、ABAQUS等。

它们的共同特点是具有高效的非线性求解器、丰富而实用的非线性材料库,ADINA还同时具有隐式和显式两种时间积分方法。

4、由单一结构场求解发展到耦合场问题的求解有限元分析方法最早应用于航空航天领域,主要用来求解线性结构问题,实践证明这是一种非常有效的数值分析方法。

而且从理论上也已经证明,只要用于离散求解对象的单元足够小,所得的解就可足够逼近于精确值。

现在用于求解结构线性问题的有限元方法和软件已经比较成熟,发展方向是结构非线性、流体动力学和耦合场问题的求解。

例如由于摩擦接触而产生的热问题,金属成形时由于塑性功而产生的热问题,需要结构场和温度场的有限元分析结果交叉迭代求解,即热力耦合的问题。

当流体在弯管中流动时,流体压力会使弯管产生变形,而管的变形又反过来影响到流体的流动……这就需要对结构场和流场的有限元分析结果交叉迭代求解,即所谓流固耦合的问题。

由于有限元的应用越来越深入,人们关注的问题越来越复杂,耦合场的求解必定成为CAE软件的发展方向。

5、程序面向用户的开放性随着商业化的提高,各软件开发商为了扩大自己的市场份额,满足用户的需求,在软件的功能、易用性等方面花费了大量的投资,但由于用户的要求千差万别,不管他们怎样努力也不可能满足所有用户的要求,因此必须给用户一个开放的环境,允许用户根据自己的实际情况对软件进行扩充,包括用户自定义单元特性、用户自定义材料本构(结构本构、热本构、流体本构)、用户自定义流场边界条件、用户自定义结构断裂判据和裂纹扩展规律等等。

关注有限元的理论发展,采用最先进的算法技术,扩充软件的能,提高软件性能以满足用户不断增长的需求,是CAE软件开发商的主攻目标,也是其产品持续占有市场,求得生存和发展的根本之道。

非线性有限元的有关著作和简要历史

庄茁

已经发表的一些成功的实验和专题文章,完全或者部分地对非线性有限元分析做出了贡献。

仅论述非线性有限元的作者包括Oden(1972),Crisfield(1991),Kleiber(1998)和Zhong(1993)。

特别值得注意的时Oden的书,因为它时固体和结构非线性有限元的先驱作者。

最近的作者又Simo和Hughes(1998)、Bonet和Wood(1997)。

某些作者还部分的非线性分析做出了贡献,他们是Belytschko和Hunhes(1983),Zienkiewicz和Taylor(1991),Bathe(1996),以及Cook,Malkushe和Plesha(1989)。

对于非线性有限元分析,他们的书提供了有益的入门指南。

作为姐妹篇,线性有限元分析的论述也是有用的,内容最全面的是Hughes(1987)、Zienkiewicz和Taylor(1991)的著作。

非线性有限元方法有多种溯源。

通过波音研究的工作和Turner,Clough,Martin和Yopp(1956)的著名文章,使线性有限元分析得以闻名,不久之后,在许多大学和研究所里,工程师们开始将方法扩展至非线性、小位移的静态问题。

但是,它难以燃起早期有限元社会的激情和改变传统研究者们对于这些方法的鄙视。

例如,因为考虑到没有科学的是实质,《JournalofAppliedMechanics》许多年都拒绝刊登关于有限元方法的文章。

然而。

对于许多必须涉及工程问题的工程师们,他们非常清楚有限元方法的前途,因为它提供了一种处理复杂形状真实问题的可能性。

  在20世纪60年代,由于EdWilson发布了他的第一个程序,这种激情终于被点燃了。

这些程序的第一代没有名字。

在遍布世界的许多实验室里,通过改进和扩展这些早期在Berkeley开发的软件,工程师们扩展了新的用途,这些带来了对工程分析的巨大冲击和有限元软件的随之发展。

在Berkeley开发的第二代线性程序称之为SAP(structuralanalysisprogram)。

由Berkeley的工作发展起来的第一个非线性程序使NONSAP,它具有隐式积分进行平衡求解和瞬时问题求解的功能。

  第一批非线性有限元方法文章的主要贡献者由Argyris(1965),Marcal和King(1967)。

不久,大批文章激增,而且软件随之诞生。

当时在Brown大学任教的PedroMarcal,作为第一个非线性商业有限元程序进入市场,与1969年建立了一个公司,程序命名为MARC,目前它仍然是主要软件。

大约在同期,JohnSwanson为了核能应用在Westinghouse发展了一个非线性有限元程序。

为了使ANSYS程序进入市场,他于1969年离开Westinghouse。

尽管ANSYS主要是关注非线性材料而非求解完全的非线性问题,但他多年来仍垄断了商业非线性有限元的舞台

  在早期的商用软件舞台上,另外两个主要人物使DavidHibbitt和Klaus-JurgenBathe。

Hibbitt与PedroMarcal合作到了1972年,后来与其它人合作建立了HKS公司,使ABAQUS商业软件进入市场。

因为该程序是能够引导研究人员增加用户单元和材料模型的早期有限元程序之一,所以它对软件行业带来了实质性的冲击。

JurgenBathe是在EdWilson的指导下在Berkeley获得博士学位的,不久之后开始在MIT任教,这期间他发表了他的程序。

这是NONSAP软件的派生品,称之ADINA。

直到大约1990年,商用有限元程序集中在静态解答和隐式方法的动态解答。

在20世纪70年代,这些方法取得了非常大的进步,主要贡献来自于Berkeley,起源于Berkeley的研究人员:

ThomasJ.R.Hughes,RobertTayor,JuanSimo,JurgenBathe,CarlosFelippa,PalBergan,KasparWillam,EkerhardRamm和MichaelOrtiz。

他们是Berkeley的杰出研究者中的一部分。

不容置疑,他们是早期有限元的主要孵化人员。

当代非线性软件的另一个血脉是显式有限元程序。

Wilkins(1964)在DOE实验室的工作强烈的影响了早期的显式有限元方法,特别式命名为hydro-codes的软件。

1964年,Costantino在芝加哥的IIT研究院发展了可能是第一个的显式有限元程序(Costantino,1967)。

它局限于线性材料和小变形由带状刚度矩阵乘以

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 小学教育 > 小学作文

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1