北师大版六年级数学竞赛题五套附答案Word文件下载.docx
《北师大版六年级数学竞赛题五套附答案Word文件下载.docx》由会员分享,可在线阅读,更多相关《北师大版六年级数学竞赛题五套附答案Word文件下载.docx(24页珍藏版)》请在冰豆网上搜索。
3
第2页共28页
12
所以,所求的除式为:
115?
12,9……7
2.
(1)在下面的()内填上适当的数字,使得三个数的平均数是140。
(5),(8)8,(3)27
三数的平均数是140,则三数之和:
140×
3,420
第三个数应为327
420,327,93
显然,第一个数是5,第二个数是88。
(2)按规律填数
5,20,45,80,125,180,245。
20,5,15
45,20,25
80,45,35
125,80,45
所以下一个数应为:
125,55,180
3.一个台阶图的每一层都由黑色和白色的正方形交错组成。
且每一层的两端都是黑
色的正方形(如图),那么第2000层中白色的正方形的数目是多少,
观察图形可知,每层的白色正方形的个数等于层数减1,所以,第2000层中应有
1999个白色正方形。
4.在一个停车场上,汽车,摩托车共停了48辆,其中每辆汽车有4个轮子,每辆
摩托车有3个轮子,这些车共有172个轮子,问,停车场上,两种车各多少辆,假设48辆车都是汽车
应有车轮数为
48×
4,192
第3页共28页
所以,摩托车的数量为
(48×
4,172)?
(4,1)
20(辆)
汽车有48,20,28(辆)
所有人的苹果个数应当尽量接近,10个小朋友先分别得到:
1,2,3……10个苹果,剩下的苹果除以10得
100,(1,2,3,……,10),?
10
45?
10,4……5
所以,再给每个小朋友增加4个苹果,后5个小朋友每人再增加1个苹果,10个小朋友的苹果个数应分别为:
5,6,7,8,9,11,12,13,14,15。
所以,得到苹果最多的小朋友至少得15个。
列表,用倒推法(从下往上填)
甲乙丙
885648初始状态
3211248甲给乙后
326496乙给丙后
646464丙给甲后
甲、乙、丙三层原有书分别为:
88本、56本、48本。
7.某乡有10个养鸡场,每个鸡场所养鸡的数量都不相同,且不到万只,凑巧的是各鸡场的只数各位上的数字相加的和都等于34,求这10个养鸡场共养了多少只鸡。
各位数字之和为34,小于10000的数只能是四位数。
所以,各鸡场养鸡的只数,是只能由9,9,9,7或9,9,8,8组成的四位数,据题意各不相同,知10个数分别为:
7997,9799,9979,9997,8899,8989,8998,9889,9898,9988。
它们的和为:
94435(只)。
第4页共28页
__________________________________________________
因为每行有4个数,所以前99行共有:
99×
4,396(个)数
又因为这个数表中开始的最小的一个数为2,所以,依数列的排列规律可知,第100行的左边第1个数为:
396,1,1,398
男孩100秒走了
3×
100,300(级)
女孩300秒走了
2×
300,600(级)
说明自动扶梯每秒走
(600,300)?
(300,100)
1.5(级)
所以自动扶梯共有
(3,1.5)×
100,150(级)
首先,原数的万位数字显然是2,新数的万位数字则只能是5,
其次,原数的千位数字必大于4,否则乘2不进位,但百位数字乘2后至多进1到千位,这样千位数字只能为9。
依次类推得到原数的前四位数字为2,9,9,9。
又个位数字只能为奇数,经检验,原数的个位数字为5。
所以,所求的原五位奇数为29995。
第5页共28页
五、六年级数学竞赛模拟试卷及答案
(二)
1.列式计算:
(1)(294.4,19.2×
6)?
(6,8)
(2)12.5×
0.76×
0.4×
8×
2.5
2.
(1)二数相乘,若被乘数增加12,乘数不变,积增加60,若被乘数不变,乘数增加12,积增加144,那么原来的积是什么,
(2)1990年6月1日是星期五,那么,2000年10月1日是星期几,3.一角钱6张,伍角钱2张,一元钱8张,可以组成多少种不同的币值,4.现将12枚棋子,放在图中的20个方格中,每格最多放1枚棋子。
要求每行每列所放的棋子数的和都是偶数,应该怎样放,在图上表示出来。
5.有一栋居民楼,每家都订了2份不同的报纸,该居民楼共订了三种报纸,其中,中国电视报34份,北京晚报30份,参考消息22份,那么订北京晚报和参考消息的共有多少家,
6.在桌子上有三张扑克牌,排成一行,我们已经知道:
(1)k右边的两张牌中至少有一张是A。
(2)A左边的两张牌中也有一张是A。
(3)方块左边的两张牌中至少有一张是红桃。
(4)红桃右边的两张牌中也有一张是红桃。
请将这三张牌按顺序写出来。
7.将偶数排成下表:
ABCDE
2468
16141210
18202224
32302826
第6页共28页
……
那么,1998这个数在哪个字母下面,
8.在下图的14个方格中,各填上一个整数,如果任何相连的三个方格中填的数之和都是20,已知第4格填9,第12格填7,那么,第8个格子中应填什么数,
97
9.将自然数1,2,3……15,这15个自然数分成两组数A和B。
求证:
A或者B中,必有两个不同的数的和为完全平方数。
10.把一张纸剪成6块,从中任取几块,将每一块剪成6块,再任取几块,又将每一块剪成6块,如此剪下去,问:
经过有限次后,能否恰好剪成1999块,说明理由。
试题二答案
1.
(1)(294.4,19.2×
(6,8)
179.2?
14
12.8
(2)12.5×
=(12.5×
8)×
(0.4×
2.5)×
0.76
=100×
1×
0.76=76
2.
(1)解:
二数相乘,若被乘数增加12,乘数不变,积增加60,若被乘数不变,乘数增加12,积增加144,那么原来的积是什么,
设原题为a×
b
据题意:
(a,12)×
b,a×
b,60
可得:
12×
b,60b=5
同样:
(b,12)×
a,a×
b,144
从而:
a=144a=12
?
原来的积为:
5,60
(2)解:
1990年6月1日是星期五,那么,2000年10月1日是星期几,
一年365天,十年加上1992,1996,2000三个闰年的3天,再加上六、七、八、九月的天数,还有10月1日,共
3650,3,30,31,31,30,1
第7页共28页
3776
3776?
7,539……3
1990年6月1日星期五,所以,2000年10月1日是星期日。
3.一角钱6张,伍角钱2张,一元钱8张,可以组成多少种不同的币值,
答:
所有的钱共有9元6角。
最小的币值是一角,而有6张,与伍角可以组成一角、二角……九角、一元的所有整角钱数。
所以,可以组成从一角到九元六角的所有整角,共96种不同钱数。
4.现将12枚棋子,放在图中的20个方格中,每格最多放1枚棋子。
图解(?
)代表棋子):
答案不唯一。
解:
每家订2份不同报纸,而共订了
34,30,22,86(份)
所以,共有43家。
订中国电视报有34家,那么,设订此报的有9家。
而不订中国电视报的人家,必然订的是北京晚报和参考消息。
所以,订北京晚报和参考消息的共有9家。
第8页共28页
设桌上的三张牌为甲、乙、丙,由条件
(1)k右边有两张牌,所以,甲必是k,
且乙、丙中至少有一张是A。
由条件
(2),A的左边还有A,那么,必然乙、丙都是A。
同样,可推出,由(4)知:
甲为红桃。
由(3)得丙为方块,再由(4)即得乙是红桃。
?
三张牌的顺次为:
红桃k,红桃A,方块A。
246816141210
1820222432302826……
由图表看出:
偶数依次排列,每8个偶数一组依次按B、C、D、E、D、C、B、
A列顺序排。
看A列,E列得到排列顺序是以16为周期来循环的。
1998?
16,124……14
所以,1998与14同列在B列。
8.在下图的14个方格中,各填上一个整数,如果任何相连的三个方格中填的数之
和都是20,已知第4格填9,第12格填7,那么,第8个格子中应填什么数,
设a、b、c、d是任连续四格中的数,据题意:
a,b,c,20,b,c,d
a=d
那么,第1,4,7,10,13格中的数相同,都是9。
同样,第3,6,9,12格中的数都是7。
那么,第2,5,8,11,14格中的数相同,都应为:
20,9,7,4
A或者B
第9页共28页
中,必有两个不同的数的和为完全平方数。
假设A、B两组中都没有不同的两个数的和是完全平方数,我们说明是不可能
的。
不妨设1在A组
22241,3,4,,1,15,16,
3,15都在B组
23,6,9,3
6须在A组
246,10,16,
又得到10应在B组,这时,B组已有两数和为完全平方数了。
2510,15,25,
所以,在A组或B组中,必有两个不相同的数的和为完全平方数。
10.把一张纸剪成6块,从中任取几块,将每一又块剪成6块,再任取几块,又将
每一块剪成6块,如此剪下去,问:
kk11解:
设剪成6块后,第一次从中取出块,将每一块剪成6块,则多出了5块,
这时,共有:
kk116,5,1,5,5
k1,5(,1),1(块)
kk22第二次从中又取出块,每块剪成6块,增加了5块,这时,共有
kk126,5,5
kk12,5(,,1),1(块)
kn以此类推,第n次取块,剪成6块后共有
kkk12n5(,,……,,1),1(块)
因此,每次剪完后,纸的总数都是(5k,1)的自然数(即除以5余1)1999?
5,399……4
所以,不可能得到1999张纸块。
第10页共28页
五、六年级数学竞赛模拟试卷及答案(三)
343244,,,,,()ab,a,530,1.
(1)如果表示(a,2)×
b,例如,那么,当时,求a的值。
(2)a、b、c是1,9中的不同数码,用它们组成的六个没有重复数字的三位数之和是(a,b,c)的多少倍,
2.
(1)大、小两个长方形对应边的距离是5厘米,如图,两个长方形之间部分的面积是1000平方厘米,求:
大长方形的周长。
5
(2)口袋中装有10种不同颜色的珠子,每种都是100个,要想保证从袋中摸出3种不同颜色的珠子,并且每种至少10个,那么至少要摸出多少个珠子。
3.把一根长1米的圆柱形铁棒锯成4段,每段仍是圆柱体,表面积比原来增加了24平方厘米,求,这根铁棒的体积多少立方分米。
4.恰有两位数字相同的三位数共有多少个,
5.杨静新买的手表比家里的挂钟每小时快30秒,家里的挂钟每小时比标准时间慢30秒。
杨静的手表是快还是慢,一昼夜差多少秒,
6.将9张面积都是9的图形,放在面积为45的桌面上,(不能超出桌面),能否使其中任意两个图形相互重叠的面积都小于1,
7.甲、乙两人同时从山脚开始爬山,到达山顶后,就立即下山,他们两人下山的速度都
第11页共28页
是各自上山速度的2倍。
甲到山顶时,乙距山顶还有400米,甲回到山脚时,乙刚好下到半山腰。
求:
山脚到山顶的距离。
8.有三块草地,面积分别为4亩、8亩和10亩,草地上的草一样厚,而且生长的一样快,若第一块草地可供24头牛吃6周,第二块草地可供36头牛吃12周。
问:
第三块草地可供50头牛吃几周,
9.某工厂生产一种圆盘形玩具。
在圆盘正面的圆周上均匀分布安装10个小球,其中3个为红球,7个为白球,如图所示,若两个圆盘都正面朝上,可以圆心对圆心,红球对红球,白球对白球叠放在一起,就算同一种规格。
这类玩具一共可以有多少种不同的规格,
10.已知:
4×
……×
1998
n21×
a,
n21其中:
表示有n个21连乘,a是自然数,求n的最大值。
试题三答案
343244,,,,,()ab,1.
(1)如果表示(a,2)×
b,例如
a,530,那么,当时,求a的值。
aa,525,,,()
51030540aa,,,
a8
第12页共28页
abcacbbacbcacabcba,,,,,
,,,,,,,,200202()()()abcabcabc
,,222()abc
设大长方形长为a厘米,宽为b厘米,则小长方形的长为(a,b)厘米,宽为(b,10)厘米
abab,,,,()()10101000
ababab,,,,,[]10101001000
10101100ab,,
,,ab110
大长方形周长为:
2220()()ab,,厘米
从最不利的情况考虑,他摸出2种颜色的珠子每种100个,剩下8种颜色的珠子每种摸出9个。
此时,再摸出1个珠子,无论是剩下的8种颜色的哪一种,都可满足题意。
所以,至少要摸出
100×
2,9×
8,1
273(个)
锯成4段需锯3次,每锯1次表面积增加两个底面面积。
共增加了6个底面积,所以,圆柱底面面积是:
24?
(2×
3),4(平方厘米)
铁棒的体积是
0.04×
10,0.4(立方分米)
第13页共28页
方法1:
三位数各不相同的有
9×
8,648(个)
三位数字全相同的有9个
所以,在900个(三位数一共有900个)三位数中,恰有两位数字相同的共有:
900,648,9,243(个)
方法2:
三位数abc
a=b?
c9*9=81
a=c?
b9*9=81
b=c?
ab=c=0有9种;
09*8=72
共81+81+9+72=243
5.杨静新买的手表比家里的挂钟每小时快30秒,家里的挂钟每小时比标准时间慢30
秒。
一小时是3600秒,据题意,手表走3630秒,挂钟走3600秒,挂钟走3570秒是标
准时间的3600秒。
所以标准时间走3600秒,手表走:
3630?
3600×
3570
3599.75(秒)
所以,一昼夜24小时,手表慢
(3600,3599.75)×
24
6(秒)
6.将9张面积都是9的图形,放在面积为45的桌面上,(不能超出桌面),能否使
其中任意两个图形相互重叠的面积都小于1,
如果能,将9个图形依次编号为1,9号,1号与2,9号重叠的面积小于8,2号与
3,9号重叠的面积小于7……,8号与9号重叠的面积小于1。
总重叠面积必小于:
1,2,3,……,8,36
那么,九个图形所占的总面积必大于
9,36,45
与题意矛盾,所以不能。
第14页共28页
7.甲、乙两人同时从山脚开始爬山,到达山顶后,就立即下山,他们两人下山的速度都是各自上山速度的2倍。
如果两人下山的速度与他们各自上山的速度相同,题中相应的条件应变为:
“甲下
11
24山路走了,乙下山路走了。
”
1
2因为,甲到山顶时比乙多走了400米,所以,甲下山路走了,应比乙多走:
2),600(米)400×
(1,
4而这时乙下山路走了,知,甲、乙的距离是山路的:
111
244,,
4即山路的是600米,所以从山脚到山顶的距离为:
4600?
2400(米)
将第一块草地及牛的头数都扩大到原来的2倍,变为:
8亩草地可供48头牛吃6周。
对比第二块草地,8亩草地可供36头牛吃12周。
设1头牛1周吃的草为1份,则8亩地每周可长草:
(36×
12,48×
(12,6)
24(份)
8亩草地原有草:
(36,24)×
12,144(份)
由此推知,10亩草地原有草:
144?
10,180(份)
每周长草:
10,30(份)
第15页共28页
可供50头牛吃
180?
(50,30),9(周)
按两个红球间隔白球的数量分类。
用黑点代表红球,空心点代表白球,最多间隔3个白球的有2种不同规格:
最多间隔4个白球的有4种不同规格:
第16页共28页
类似地,最多间隔5个白球的有3种不同的规格,最多间隔6个白球的有2种不同
规格。
最多间隔7个白球的有1种规格。
所以,共有不同规格:
2,4,3,2,1,12(种)
表示有n个21连乘,a是自然数,求,n的最大值。
21,3×
7
分3与7两种情况讨论,用,,表示一个数的整数部分。
这1998个因数中,7的倍数有
1998?
7,,285(个)
27就是说有:
7×
1,7×
2,7×
3……7×
285,1995,共285个,在这285个因数中,是
的倍数的共有:
285?
7,,40(个)
37在上面的40个