北师大版六年级数学竞赛题五套附答案Word文件下载.docx

上传人:b****6 文档编号:19475713 上传时间:2023-01-06 格式:DOCX 页数:24 大小:27.47KB
下载 相关 举报
北师大版六年级数学竞赛题五套附答案Word文件下载.docx_第1页
第1页 / 共24页
北师大版六年级数学竞赛题五套附答案Word文件下载.docx_第2页
第2页 / 共24页
北师大版六年级数学竞赛题五套附答案Word文件下载.docx_第3页
第3页 / 共24页
北师大版六年级数学竞赛题五套附答案Word文件下载.docx_第4页
第4页 / 共24页
北师大版六年级数学竞赛题五套附答案Word文件下载.docx_第5页
第5页 / 共24页
点击查看更多>>
下载资源
资源描述

北师大版六年级数学竞赛题五套附答案Word文件下载.docx

《北师大版六年级数学竞赛题五套附答案Word文件下载.docx》由会员分享,可在线阅读,更多相关《北师大版六年级数学竞赛题五套附答案Word文件下载.docx(24页珍藏版)》请在冰豆网上搜索。

北师大版六年级数学竞赛题五套附答案Word文件下载.docx

3

第2页共28页

12

所以,所求的除式为:

115?

12,9……7

2.

(1)在下面的()内填上适当的数字,使得三个数的平均数是140。

(5),(8)8,(3)27

三数的平均数是140,则三数之和:

140×

3,420

第三个数应为327

420,327,93

显然,第一个数是5,第二个数是88。

(2)按规律填数

5,20,45,80,125,180,245。

20,5,15

45,20,25

80,45,35

125,80,45

所以下一个数应为:

125,55,180

3.一个台阶图的每一层都由黑色和白色的正方形交错组成。

且每一层的两端都是黑

色的正方形(如图),那么第2000层中白色的正方形的数目是多少,

观察图形可知,每层的白色正方形的个数等于层数减1,所以,第2000层中应有

1999个白色正方形。

4.在一个停车场上,汽车,摩托车共停了48辆,其中每辆汽车有4个轮子,每辆

摩托车有3个轮子,这些车共有172个轮子,问,停车场上,两种车各多少辆,假设48辆车都是汽车

应有车轮数为

48×

4,192

第3页共28页

所以,摩托车的数量为

(48×

4,172)?

(4,1)

20(辆)

汽车有48,20,28(辆)

所有人的苹果个数应当尽量接近,10个小朋友先分别得到:

1,2,3……10个苹果,剩下的苹果除以10得

100,(1,2,3,……,10),?

10

45?

10,4……5

所以,再给每个小朋友增加4个苹果,后5个小朋友每人再增加1个苹果,10个小朋友的苹果个数应分别为:

5,6,7,8,9,11,12,13,14,15。

所以,得到苹果最多的小朋友至少得15个。

列表,用倒推法(从下往上填)

甲乙丙

885648初始状态

3211248甲给乙后

326496乙给丙后

646464丙给甲后

甲、乙、丙三层原有书分别为:

88本、56本、48本。

7.某乡有10个养鸡场,每个鸡场所养鸡的数量都不相同,且不到万只,凑巧的是各鸡场的只数各位上的数字相加的和都等于34,求这10个养鸡场共养了多少只鸡。

各位数字之和为34,小于10000的数只能是四位数。

所以,各鸡场养鸡的只数,是只能由9,9,9,7或9,9,8,8组成的四位数,据题意各不相同,知10个数分别为:

7997,9799,9979,9997,8899,8989,8998,9889,9898,9988。

它们的和为:

94435(只)。

第4页共28页

__________________________________________________

因为每行有4个数,所以前99行共有:

99×

4,396(个)数

又因为这个数表中开始的最小的一个数为2,所以,依数列的排列规律可知,第100行的左边第1个数为:

396,1,1,398

男孩100秒走了

100,300(级)

女孩300秒走了

300,600(级)

说明自动扶梯每秒走

(600,300)?

(300,100)

1.5(级)

所以自动扶梯共有

(3,1.5)×

100,150(级)

首先,原数的万位数字显然是2,新数的万位数字则只能是5,

其次,原数的千位数字必大于4,否则乘2不进位,但百位数字乘2后至多进1到千位,这样千位数字只能为9。

依次类推得到原数的前四位数字为2,9,9,9。

又个位数字只能为奇数,经检验,原数的个位数字为5。

所以,所求的原五位奇数为29995。

第5页共28页

五、六年级数学竞赛模拟试卷及答案

(二)

1.列式计算:

(1)(294.4,19.2×

6)?

(6,8)

(2)12.5×

0.76×

0.4×

2.5

2.

(1)二数相乘,若被乘数增加12,乘数不变,积增加60,若被乘数不变,乘数增加12,积增加144,那么原来的积是什么,

(2)1990年6月1日是星期五,那么,2000年10月1日是星期几,3.一角钱6张,伍角钱2张,一元钱8张,可以组成多少种不同的币值,4.现将12枚棋子,放在图中的20个方格中,每格最多放1枚棋子。

要求每行每列所放的棋子数的和都是偶数,应该怎样放,在图上表示出来。

5.有一栋居民楼,每家都订了2份不同的报纸,该居民楼共订了三种报纸,其中,中国电视报34份,北京晚报30份,参考消息22份,那么订北京晚报和参考消息的共有多少家,

6.在桌子上有三张扑克牌,排成一行,我们已经知道:

(1)k右边的两张牌中至少有一张是A。

(2)A左边的两张牌中也有一张是A。

(3)方块左边的两张牌中至少有一张是红桃。

(4)红桃右边的两张牌中也有一张是红桃。

请将这三张牌按顺序写出来。

7.将偶数排成下表:

ABCDE

2468

16141210

18202224

32302826

第6页共28页

……

那么,1998这个数在哪个字母下面,

8.在下图的14个方格中,各填上一个整数,如果任何相连的三个方格中填的数之和都是20,已知第4格填9,第12格填7,那么,第8个格子中应填什么数,

97

9.将自然数1,2,3……15,这15个自然数分成两组数A和B。

求证:

A或者B中,必有两个不同的数的和为完全平方数。

10.把一张纸剪成6块,从中任取几块,将每一块剪成6块,再任取几块,又将每一块剪成6块,如此剪下去,问:

经过有限次后,能否恰好剪成1999块,说明理由。

试题二答案

1.

(1)(294.4,19.2×

(6,8)

179.2?

14

12.8

(2)12.5×

=(12.5×

8)×

(0.4×

2.5)×

0.76

=100×

0.76=76

2.

(1)解:

二数相乘,若被乘数增加12,乘数不变,积增加60,若被乘数不变,乘数增加12,积增加144,那么原来的积是什么,

设原题为a×

b

据题意:

(a,12)×

b,a×

b,60

可得:

12×

b,60b=5

同样:

(b,12)×

a,a×

b,144

从而:

a=144a=12

原来的积为:

5,60

(2)解:

1990年6月1日是星期五,那么,2000年10月1日是星期几,

一年365天,十年加上1992,1996,2000三个闰年的3天,再加上六、七、八、九月的天数,还有10月1日,共

3650,3,30,31,31,30,1

第7页共28页

3776

3776?

7,539……3

1990年6月1日星期五,所以,2000年10月1日是星期日。

3.一角钱6张,伍角钱2张,一元钱8张,可以组成多少种不同的币值,

答:

所有的钱共有9元6角。

最小的币值是一角,而有6张,与伍角可以组成一角、二角……九角、一元的所有整角钱数。

所以,可以组成从一角到九元六角的所有整角,共96种不同钱数。

4.现将12枚棋子,放在图中的20个方格中,每格最多放1枚棋子。

图解(?

)代表棋子):

答案不唯一。

解:

每家订2份不同报纸,而共订了

34,30,22,86(份)

所以,共有43家。

订中国电视报有34家,那么,设订此报的有9家。

而不订中国电视报的人家,必然订的是北京晚报和参考消息。

所以,订北京晚报和参考消息的共有9家。

第8页共28页

设桌上的三张牌为甲、乙、丙,由条件

(1)k右边有两张牌,所以,甲必是k,

且乙、丙中至少有一张是A。

由条件

(2),A的左边还有A,那么,必然乙、丙都是A。

同样,可推出,由(4)知:

甲为红桃。

由(3)得丙为方块,再由(4)即得乙是红桃。

三张牌的顺次为:

红桃k,红桃A,方块A。

246816141210

1820222432302826……

由图表看出:

偶数依次排列,每8个偶数一组依次按B、C、D、E、D、C、B、

A列顺序排。

看A列,E列得到排列顺序是以16为周期来循环的。

1998?

16,124……14

所以,1998与14同列在B列。

8.在下图的14个方格中,各填上一个整数,如果任何相连的三个方格中填的数之

和都是20,已知第4格填9,第12格填7,那么,第8个格子中应填什么数,

设a、b、c、d是任连续四格中的数,据题意:

a,b,c,20,b,c,d

a=d

那么,第1,4,7,10,13格中的数相同,都是9。

同样,第3,6,9,12格中的数都是7。

那么,第2,5,8,11,14格中的数相同,都应为:

20,9,7,4

A或者B

第9页共28页

中,必有两个不同的数的和为完全平方数。

假设A、B两组中都没有不同的两个数的和是完全平方数,我们说明是不可能

的。

不妨设1在A组

22241,3,4,,1,15,16,

3,15都在B组

23,6,9,3

6须在A组

246,10,16,

又得到10应在B组,这时,B组已有两数和为完全平方数了。

2510,15,25,

所以,在A组或B组中,必有两个不相同的数的和为完全平方数。

10.把一张纸剪成6块,从中任取几块,将每一又块剪成6块,再任取几块,又将

每一块剪成6块,如此剪下去,问:

kk11解:

设剪成6块后,第一次从中取出块,将每一块剪成6块,则多出了5块,

这时,共有:

kk116,5,1,5,5

k1,5(,1),1(块)

kk22第二次从中又取出块,每块剪成6块,增加了5块,这时,共有

kk126,5,5

kk12,5(,,1),1(块)

kn以此类推,第n次取块,剪成6块后共有

kkk12n5(,,……,,1),1(块)

因此,每次剪完后,纸的总数都是(5k,1)的自然数(即除以5余1)1999?

5,399……4

所以,不可能得到1999张纸块。

第10页共28页

五、六年级数学竞赛模拟试卷及答案(三)

343244,,,,,()ab,a,530,1.

(1)如果表示(a,2)×

b,例如,那么,当时,求a的值。

(2)a、b、c是1,9中的不同数码,用它们组成的六个没有重复数字的三位数之和是(a,b,c)的多少倍,

2.

(1)大、小两个长方形对应边的距离是5厘米,如图,两个长方形之间部分的面积是1000平方厘米,求:

大长方形的周长。

5

(2)口袋中装有10种不同颜色的珠子,每种都是100个,要想保证从袋中摸出3种不同颜色的珠子,并且每种至少10个,那么至少要摸出多少个珠子。

3.把一根长1米的圆柱形铁棒锯成4段,每段仍是圆柱体,表面积比原来增加了24平方厘米,求,这根铁棒的体积多少立方分米。

4.恰有两位数字相同的三位数共有多少个,

5.杨静新买的手表比家里的挂钟每小时快30秒,家里的挂钟每小时比标准时间慢30秒。

杨静的手表是快还是慢,一昼夜差多少秒,

6.将9张面积都是9的图形,放在面积为45的桌面上,(不能超出桌面),能否使其中任意两个图形相互重叠的面积都小于1,

7.甲、乙两人同时从山脚开始爬山,到达山顶后,就立即下山,他们两人下山的速度都

第11页共28页

是各自上山速度的2倍。

甲到山顶时,乙距山顶还有400米,甲回到山脚时,乙刚好下到半山腰。

求:

山脚到山顶的距离。

8.有三块草地,面积分别为4亩、8亩和10亩,草地上的草一样厚,而且生长的一样快,若第一块草地可供24头牛吃6周,第二块草地可供36头牛吃12周。

问:

第三块草地可供50头牛吃几周,

9.某工厂生产一种圆盘形玩具。

在圆盘正面的圆周上均匀分布安装10个小球,其中3个为红球,7个为白球,如图所示,若两个圆盘都正面朝上,可以圆心对圆心,红球对红球,白球对白球叠放在一起,就算同一种规格。

这类玩具一共可以有多少种不同的规格,

10.已知:

……×

1998

n21×

a,

n21其中:

表示有n个21连乘,a是自然数,求n的最大值。

试题三答案

343244,,,,,()ab,1.

(1)如果表示(a,2)×

b,例如

a,530,那么,当时,求a的值。

aa,525,,,()

51030540aa,,,

a8

第12页共28页

abcacbbacbcacabcba,,,,,

,,,,,,,,200202()()()abcabcabc

,,222()abc

设大长方形长为a厘米,宽为b厘米,则小长方形的长为(a,b)厘米,宽为(b,10)厘米

abab,,,,()()10101000

ababab,,,,,[]10101001000

10101100ab,,

,,ab110

大长方形周长为:

2220()()ab,,厘米

从最不利的情况考虑,他摸出2种颜色的珠子每种100个,剩下8种颜色的珠子每种摸出9个。

此时,再摸出1个珠子,无论是剩下的8种颜色的哪一种,都可满足题意。

所以,至少要摸出

100×

2,9×

8,1

273(个)

锯成4段需锯3次,每锯1次表面积增加两个底面面积。

共增加了6个底面积,所以,圆柱底面面积是:

24?

(2×

3),4(平方厘米)

铁棒的体积是

0.04×

10,0.4(立方分米)

第13页共28页

方法1:

三位数各不相同的有

8,648(个)

三位数字全相同的有9个

所以,在900个(三位数一共有900个)三位数中,恰有两位数字相同的共有:

900,648,9,243(个)

方法2:

三位数abc

a=b?

c9*9=81

a=c?

b9*9=81

b=c?

ab=c=0有9种;

09*8=72

共81+81+9+72=243

5.杨静新买的手表比家里的挂钟每小时快30秒,家里的挂钟每小时比标准时间慢30

秒。

一小时是3600秒,据题意,手表走3630秒,挂钟走3600秒,挂钟走3570秒是标

准时间的3600秒。

所以标准时间走3600秒,手表走:

3630?

3600×

3570

3599.75(秒)

所以,一昼夜24小时,手表慢

(3600,3599.75)×

24

6(秒)

6.将9张面积都是9的图形,放在面积为45的桌面上,(不能超出桌面),能否使

其中任意两个图形相互重叠的面积都小于1,

如果能,将9个图形依次编号为1,9号,1号与2,9号重叠的面积小于8,2号与

3,9号重叠的面积小于7……,8号与9号重叠的面积小于1。

总重叠面积必小于:

1,2,3,……,8,36

那么,九个图形所占的总面积必大于

9,36,45

与题意矛盾,所以不能。

第14页共28页

7.甲、乙两人同时从山脚开始爬山,到达山顶后,就立即下山,他们两人下山的速度都是各自上山速度的2倍。

如果两人下山的速度与他们各自上山的速度相同,题中相应的条件应变为:

“甲下

11

24山路走了,乙下山路走了。

1

2因为,甲到山顶时比乙多走了400米,所以,甲下山路走了,应比乙多走:

2),600(米)400×

(1,

4而这时乙下山路走了,知,甲、乙的距离是山路的:

111

244,,

4即山路的是600米,所以从山脚到山顶的距离为:

4600?

2400(米)

将第一块草地及牛的头数都扩大到原来的2倍,变为:

8亩草地可供48头牛吃6周。

对比第二块草地,8亩草地可供36头牛吃12周。

设1头牛1周吃的草为1份,则8亩地每周可长草:

(36×

12,48×

(12,6)

24(份)

8亩草地原有草:

(36,24)×

12,144(份)

由此推知,10亩草地原有草:

144?

10,180(份)

每周长草:

10,30(份)

第15页共28页

可供50头牛吃

180?

(50,30),9(周)

按两个红球间隔白球的数量分类。

用黑点代表红球,空心点代表白球,最多间隔3个白球的有2种不同规格:

最多间隔4个白球的有4种不同规格:

第16页共28页

类似地,最多间隔5个白球的有3种不同的规格,最多间隔6个白球的有2种不同

规格。

最多间隔7个白球的有1种规格。

所以,共有不同规格:

2,4,3,2,1,12(种)

表示有n个21连乘,a是自然数,求,n的最大值。

21,3×

7

分3与7两种情况讨论,用,,表示一个数的整数部分。

这1998个因数中,7的倍数有

1998?

7,,285(个)

27就是说有:

1,7×

2,7×

3……7×

285,1995,共285个,在这285个因数中,是

的倍数的共有:

285?

7,,40(个)

37在上面的40个

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿教育 > 育儿理论经验

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1