材料分析技术复习3Word文档格式.docx

上传人:b****5 文档编号:19453591 上传时间:2023-01-06 格式:DOCX 页数:26 大小:197.86KB
下载 相关 举报
材料分析技术复习3Word文档格式.docx_第1页
第1页 / 共26页
材料分析技术复习3Word文档格式.docx_第2页
第2页 / 共26页
材料分析技术复习3Word文档格式.docx_第3页
第3页 / 共26页
材料分析技术复习3Word文档格式.docx_第4页
第4页 / 共26页
材料分析技术复习3Word文档格式.docx_第5页
第5页 / 共26页
点击查看更多>>
下载资源
资源描述

材料分析技术复习3Word文档格式.docx

《材料分析技术复习3Word文档格式.docx》由会员分享,可在线阅读,更多相关《材料分析技术复习3Word文档格式.docx(26页珍藏版)》请在冰豆网上搜索。

材料分析技术复习3Word文档格式.docx

即吸收限只与靶的原子序数有关,与管电压无关。

5.为什么会出现吸收限?

K吸收限为什么只有一个而L吸收限有三个?

当激发K系荧光Ⅹ射线时,能否伴生L系?

当L系激发时能否伴生K系?

一束X射线通过物体后,其强度将被衰减,它是被散射和吸收的结果。

并且吸收是造成强度衰减的主要原因。

物质对X射线的吸收,是指X射线通过物质对光子的能量变成了其他形成的能量。

X射线通过物质时产生的光电效应和俄歇效应,使入射X射线强度被衰减,是物质对X射线的真吸收过程。

光电效应是指物质在光子的作用下发出电子的物理过程。

因为L层有三个亚层,每个亚层的能量不同,所以有三个吸收限,而K只是一层,所以只有一个吸收限。

激发K系光电效应时,入射光子的能量要等于或大于将K电子从K层移到无穷远时所做的功Wk。

从X射线被物质吸收的角度称λK为吸收限。

当激发K系荧光X射线时,能伴生L系,因为L系跃迁到K系自身产生空位,可使外层电子迁入,而L系激发时不能伴生K系。

6.铝为面心立方点阵,a=0.409nm。

今用CrKa(

=0.209nm)摄照周转晶体相,X射线垂直于[001]。

试用厄瓦尔德图解法原理判断下列晶面有无可能参与衍射:

(111),(200),(220),(311),(331),(420)。

由题可知以上六个晶面都满足了hkl全奇全偶的条件。

根据艾瓦尔德图解法在周转晶体法中只要满足sinØ

<

1就有可能发生衍射。

由:

sin2Ø

=λ2(h2+k2+l2)/4a2把(hkl)为以上六点的数代入可能的:

sin2Ø

=0.195842624------------------------------(111);

=0.261121498-------------------------------(200);

=0.522246997-------------------------------(220);

=0.718089621-------------------------------(311);

=1.240376619-------------------------------(331);

=1.305617494-------------------------------(420).

有以上可知晶面(331),(420)的sinØ

>

1。

所以着两个晶面不能发生衍射,其他的都有可能。

7.试述原子散射因子f和结构因子

的物理意义。

结构因子与哪些因素有关系?

原子散射因子:

f=Aa/Ae=一个原子所有电子相干散射波的合成振幅/一个电子相干散射波的振幅,它反映的是一个原子中所有电子散射波的合成振幅。

结构因子:

式中结构振幅FHKL=Ab/Ae=一个晶胞的相干散射振幅/一个电子的相干散射振幅

结构因子表征了单胞的衍射强度,反映了单胞中原子种类、原子数目、位置对(HKL)晶面方向上衍射强度的影响。

结构因子只与原子的种类以及在单胞中的位置有关,而不受单胞的形状和大小的影响。

8.当体心立方点阵的体心原子和顶点原子种类不相同时,关于H+K+L=偶数时,衍射存在,H+K+L=奇数时,衍射相消的结论是否仍成立?

假设A原子为顶点原子,B原子占据体心,其坐标为:

A:

000(晶胞角顶)

B:

1/21/21/2(晶胞体心)

于是结构因子为:

FHKL=fAei2π(0K+0H+0L)+fBei2π(H/2+K/2+L/2)

=fA+fBeiπ(H+K+L)

因为:

enπi=e-nπi=(-1)n

所以,当H+K+L=偶数时:

FHKL=fA+fB

FHKL2=(fA+fB)2

当H+K+L=奇数时:

FHKL=fA-fB

FHKL2=(fA-fB)2

从此可见,当体心立方点阵的体心原子和顶点原主种类不同时,关于H+K+L=偶数时,衍射存在的结论仍成立,且强度变强。

而当H+K+L=奇数时,衍射相消的结论不一定成立,只有当fA=fB时,FHKL=0才发生消光,若fA≠fB,仍有衍射存在,只是强度变弱了。

9.CuKα辐射(λ=0.154nm)照射Ag(f.c.c)样品,测得第一衍射峰位置2θ=38°

,试求Ag的点阵常数。

由sin2

=λ(h2+k2+l2)/4a2

查表由Ag面心立方得第一衍射峰(h2+k2+l2)=3,所以代入数据2θ=38°

,解得点阵常数a=0.671nm

10.试总结德拜法衍射花样的背底来源,并提出一些防止和减少背底的措施。

德拜法衍射花样的背底来源是入射波的非单色光、进入试样后出生的非相干散射、空气对X射线的散射、温度波动引起的热散射等。

采取的措施有尽量使用单色光、缩短曝光时间、恒温试验等。

11.粉末样品颗粒过大或过小对德拜花样影响如何?

为什么?

板状多晶体样品晶粒过大或过小对衍射峰形影响又如何?

答.粉末样品颗粒过大会使德拜花样不连续,或过小,德拜宽度增大,不利于分析工作的进行。

因为当粉末颗粒过大(大于10-3cm)时,参加衍射的晶粒数减少,会使衍射线条不连续;

不过粉末颗粒过细(小于10-5cm)时,会使衍射线条变宽,这些都不利于分析工作。

多晶体的块状试样,如果晶粒足够细将得到与粉末试样相似的结果,即衍射峰宽化。

但晶粒粗大时参与反射的晶面数量有限,所以发生反射的概率变小,这样会使得某些衍射峰强度变小或不出现。

12.试从入射光束、样品形状、成相原理(厄瓦尔德图解)、衍射线记录、衍射花样、样品吸收与衍射强度(公式)、衍射装备及应用等方面比较衍射仪法与德拜法的异同点。

试用厄瓦尔德图解来说明德拜衍射花样的形成。

答.

入射光束

样品形状

成相原理

衍射线记录

衍射花样

样品吸收

衍射强度

衍射装备

应用

德拜法

单色

圆柱状

布拉格方程

辐射探测器

衍射环

同时吸收所有衍射

德拜相机

试样少时进行分析.过重时也可用

衍射仪法

平板状

底片感光

衍射峰

逐一接收衍射

测角仪

强度测量.花样标定.物相分析

如图所示,衍射晶面满足布拉格方程就会形成一个反射圆锥体。

环形底片与反射圆锥相交就在底片上留下衍射线的弧对。

13.同一粉末相上背射区线条与透射区线条比较起来其θ较高还是较低?

相应的d较大还是较小?

既然多晶粉末的晶体取向是混乱的,为何有此必然的规律?

答:

其θ较高,相应的d较小,虽然多晶体的粉末取向是混乱的,但是衍射倒易球与反射球的交线,倒易球半径由小到大,θ也由小到大,d是倒易球半径的倒数,所以θ较高,相应的d较小。

14.测角仪在采集衍射图时,如果试样表面转到与入射线成30°

角,则计数管与人射线所成角度为多少?

能产生衍射的晶面,与试样的自由表面呈何种几何关系?

60度。

因为计数管的转速是试样的2倍。

辐射探测器接收的衍射是那些与试样表面平行的晶面产生的衍射。

晶面若不平行于试样表面,尽管也产生衍射,但衍射线进不了探测器,不能被接收。

15.下图为某样品稳拜相(示意图),摄照时未经滤波。

巳知1、2为同一晶面衍射线,3、4为另一晶面衍射线.试对此现象作出解释.

未经滤波,即未加滤波片,因此K系特征谱线的kα、kβ两条谱线会在晶体中同时发生衍射产生两套衍射花样,所以会在透射区和背射区各产生两条衍射花样。

16.A-TiO2(锐铁矿)与R—TiO2(金红石:

)混合物衍射花样中两相最强线强度比IA-TiO2/IR-TO2=1.5。

试用参比强度法计算两相各自的质量分数。

解:

KR=3.4KA=4.3那么K=KR/KA=0.8

ωR=1/(1+KIA/IR)=1/(1+0.8×

1.5)=45%

ωA=55%

17.在α-Fe2O3及Fe3O4.混合物的衍射图样中,两根最强线的强度比IαFe2O3/IFe3O4=1.3,试借助于索引上的参比强度值计算α-Fe2O3的相对含量。

依题意可知在混合物的衍射图样中,两根最强线的强度比

这里设所求

的相对含量为

的含量为已知为

借助索引可以查到

的参比强度为

,由

可得

的值再由

以及

可以求出所求。

18.一块淬火+低温回火的碳钢,经金相检验证明其中不含碳化物,后在衍射仪上用FeKα照射,分析出γ相含1%碳,α相含碳极低,又测得γ220线条的累积强度为5.40,α211线条的累积强度为51.2,如果测试时室温为31℃,问钢中所含奥氏体的体积百分数为多少?

解:

设钢中所含奥氏体的体积百分数为fγ,α相的体积百分数为fα,又已知碳的百分含量fc=1%,由fγ+fα+fc=1得

fγ+fα=99%(Ⅰ)

又知Iγ/Iα=Cγ/Cα·

fγ/fα(Ⅱ)

其中Iγ=5.40,Iα=51.2,

Cγ=1/V02|F220|2·

P220·

∮(θ)e-2M,奥氏体为面心立方结构,H+K+L=4为偶数,故|F220|2=16f2,f为原子散射因子,查表可知多重性因子P220=12,

Cα=1/V02|F211|2·

P211·

∮(θ)e-2M,α相为体心立方结构,H+K+L=4为偶数,故

|F211|2=4f2,查表得P211=48.

∴Cγ/Cα=|F220|2·

P220/|F211|2·

P211=1.

将上述数据代入,由(Ⅰ)、(Ⅱ)得

fγ=9.4%

∴钢中所含奥氏体的体积百分数为9.4%.

19.物相定性分析的原理是什么?

对食盐进行化学分析与物相定性分析,所得信息有何不同?

物相定性分析的原理:

X射线在某种晶体上的衍射必然反映出带有晶体特征的特定的衍射花样(衍射位置θ、衍射强度I),而没有两种结晶物质会给出完全相同的衍射花样,所以我们才能根据衍射花样与晶体结构一一对应的关系,来确定某一物相。

对食盐进行化学分析,只可得出组成物质的元素种类(Na,Cl等)及其含量,却不能说明其存在状态,亦即不能说明其是何种晶体结构,同种元素虽然成分不发生变化,但可以不同晶体状态存在,对化合物更是如此。

定性分析的任务就是鉴别待测样由哪些物相所组成。

20.物相定量分析的原理是什么?

试述用K值法进行物相定量分析的过程。

根据X射线衍射强度公式,某一物相的相对含量的增加,其衍射线的强度亦随之增加,所以通过衍射线强度的数值可以确定对应物相的相对含量。

由于各个物相对X射线的吸收影响不同,X射线衍射强度与该物相的相对含量之间不成线性比例关系,必须加以修正。

这是内标法的一种,是事先在待测样品中加入纯元素,然后测出定标曲线的斜率即K值。

当要进行这类待测材料衍射分析时,已知K值和标准物相质量分数ωs,只要测出a相强度Ia与标准物相的强度Is的比值Ia/Is就可以求出a相的质量分数ωa。

21.试借助PDF(ICDD)卡片及索引,对表1、表2中未知物质的衍射资料作出物相鉴定。

表1

d/Å

(0.1nm)

I/I1

3.66

50

1.46

10

1.06

3.17

100

1.42

1.01

2.24

80

1.31

30

0.96

1.91

40

1.23

0.85

1.83

1.12

1.60

20

1.08

表2

2.40

1.26

0.93

2.09

1.25

2.03

1.20

0.81

1.75

0.80

1.47

1.02

(1)先假设表中三条最强线是同一物质的,则d1=3.17,d2=2.24,d3=3.66,估计晶面间距可能误差范围d1为3.19—3.15,d2为2.26—2.22,d3为3.68—3.64。

根据d1值(或d2,d3),在数值索引中检索适当的d组,找出与d1,d2,d3值复合较好的一些卡片。

把待测相的三强线的d值和I/I1值相比较,淘汰一些不相符的卡片,得到:

物质

卡片顺序号

待测物质

3.172.243.66

1008050

BaS

8—454

3.192.263.69

1008072

因此鉴定出待测试样为BaS

(2)同理

(1),查表得出待测试样是复相混合物。

并d1与d3两晶面检举是属于同一种物质,而d2是属于另一种物质的。

于是把d3=1.75当作d2,继续检索。

2.031.751.25

1004020

Ni

4—850

1004221

现在需要进一步鉴定待测试样衍射花样中其余线条属于哪一相。

首先,从表2中剔除Ni的线条(这里假设Ni的线条中另外一些相的线条不相重叠),把剩余线条另列于下表中,并把各衍射线的相对强度归一化处理,乘以因子2使最强线的相对强度为100。

d1=2.09,d2=2.40,d3=1.47。

按上述程序,检索哈氏数值索引中,发现剩余衍射线条与卡片顺序号为44—1159的NiO衍射数据一致。

2.092.401.47

1006040(归一值)

NiO

44—1159

2.092.401.48

1006030

因此鉴定出待测试样为Ni和NiO的混合物。

22.什么是分辨率?

影响透射电子显微镜分辨率的因素是哪些?

分辨率:

两个物点通过透镜成像,在像平面上形成两个爱里斑,如果两个物点相距较远时,两个Airy斑也各自分开,当两物点逐渐靠近时,两个Airy斑也相互靠近,直至发生部分重叠。

根据LoadReyleigh建议分辨两个Airy斑的判据:

当两个Airy斑的中心间距等于Airy斑半径时,此时两个Airy斑叠加,在强度曲线上,两个最强峰之间的峰谷强度差为19%,人的肉眼仍能分辨出是两物点的像。

两个Airy斑再相互靠近,人的肉眼就不能分辨出是两物点的像。

通常两Airy斑中心间距等于Airy斑半径时,物平面相应的两物点间距成凸镜能分辨的最小间距即分辨率。

影响透射电镜分辨率的因素主要有:

衍射效应和电镜的像差(球差、像散、色差)等。

23.有效放大倍数和放大倍数在意义上有何区别?

有效放大倍数是把显微镜最大分辨率放大到人眼的分辨本领(0.2mm),让人眼能分辨的放大倍数。

放大倍数是指显微镜本身具有的放大功能,与其具体结构有关。

放大倍数超出有效放大倍数的部分对提高分辨率没有贡献,仅仅是让人观察得更舒服而已,所以放大倍数意义不大。

显微镜的有效放大倍数、分辨率才是判断显微镜性能的主要参数。

24.球差、像散和色差是怎样造成的?

如何减小这些像差?

哪些是可消除的像差?

1,球差是由于电磁透镜磁场的近轴区与远轴区对电子束的会聚能力的不同而造成的。

一个物点散射的电子束经过具有球差的电磁透镜后并不聚在一点,所以像平面上得到一个弥散圆斑,在某一位置可获得最小的弥散圆斑,成为弥散圆。

还原到物平面上,则半径为

rs=1/4Csα3

rs为半径,Cs为透镜的球差系数,α为透镜的孔径半角。

所以见效透镜的孔径半角可减少球差。

2,色差是由于成像电子的波长(能量)不同而引起的。

一个物点散射的具有不同波长的电子,进入透镜磁场后将沿各自的轨道运动,结果不能聚焦在一个像点上,而分别交在一定的轴向范围内,形成最小色差弥散圆斑,半径为rc=Ccα|△E/E|

Cc为透镜色差系数,α为透镜孔径半角,△E/E为成像电子束能量变化率。

所以减小△E/E、α可减小色差。

3,像散是由于透镜磁场不是理想的旋对称磁场而引起的。

可减小孔径半角来减少像散。

25.聚光镜、物镜、中间镜和投影镜各自具有什么功能和特点?

聚光镜:

聚光镜用来会聚电子抢射出的电子束,以最小的损失照明样品,调节照明强度、孔径角和束斑大小。

一般都采用双聚光系统,第一聚光系统是强励磁透镜,束斑缩小率为10-15倍左右,将电子枪第一交叉口束斑缩小为φ1--5μm;

而第二聚光镜是弱励磁透镜,适焦时放大倍数为2倍左右。

结果在样品平面上可获得φ2—10μm的照明电子束斑。

 物镜:

物镜是用来形成第一幅高分辨率电子显微图象或电子衍射花样的透镜。

投射电子显微镜分辨率的高低主要取决于物镜。

因为物镜的任何缺陷都将被成相系统中的其他透镜进一步放大。

物镜是一个强励磁短焦距的透镜(f=1--3mm),它的放大倍数高,一般为100-300倍。

目前,高质量的物镜其分辨率可达0.1mm左右。

中间镜:

中间镜是一个弱励磁的长焦距变倍率透镜,可在0-20倍范围调节。

当放大倍数大于1时,用来进一步放大物镜像;

当放大倍数小于1时,用来缩小物镜像。

在电镜操作过程中,主要利用中间镜的可变倍率来控制电镜的总放大倍数。

如果把中间镜的物平面和物镜的像平面重合,则在荧光屏上得到一幅放大像,这就是电子显微镜中的成像操作;

如果把中间镜的物平面和物镜的背焦面重合,在在荧光屏上得到一幅电子衍射花样,这就是电子显微镜中的电子衍射操作。

投影镜:

投影镜的作用是把中间镜放大(或缩小)的像(或电子衍射花样)进一步放大,并投影到荧光屏上,它和物镜一样,是一个短聚焦的强磁透镜。

投影的励磁电流是固定的,因为成像的电子束进入透镜时孔径角很小,因此它的景深和焦长都非常大。

即使改变中间竟的放大倍数,是显微镜的总放大倍数有很大的变化,也不会影响图象的清晰度。

26.影响电磁透镜景深和焦长的主要因素是什么?

景深和焦长对透射电子显微镜的成像和设计有何影响?

(1)把透镜物平面允许的轴向偏差定义为透镜的景深,影响它的因素有电磁透镜分辨率、孔径半角,电磁透镜孔径半角越小,景深越大,如果允许较差的像分辨率(取决于样品),那么透镜的景深就更大了;

把透镜像平面允许的轴向偏差定义为透镜的焦长,影响它的因素有分辨率、像点所张的孔径半角、透镜放大倍数,当电磁透镜放大倍数和分辨率一定时,透镜焦长随孔径半角的减小而增大。

(2)透射电子显微镜的成像系统由物镜、中间镜和投影镜组成。

物镜的作用是形成样品的第一次放大镜,电子显微镜的分辨率是由一次像来决定的,物镜是一个强励磁短焦距的透镜,它的放大倍数较高。

中间镜是一个弱透镜,其焦距很长,放大倍数可通过调节励磁电流来改变,在电镜操作过程中,主要是利用中间镜的可变倍率来控制电镜的放大倍数。

投影镜的作用是把中间镜放大(或缩小)的像进一步放大,并投影到荧光屏上,它和物镜一样,是一个短焦距的强磁电镜。

而磁透镜的焦距可以通过线圈中所通过的电流大小来改变,因此它的焦距可任意调节。

用磁透镜成像时,可以在保持物距不变的情况下,改变焦距和像距来满足成像条件,也可以保持像距不变,改变焦距和物距来满足成像条件。

在用电子显微镜进行图象分析时,物镜和样品之间的距离总是固定不变的,因此改变物镜放大倍数进行成像时,主要是改变物镜的焦距和像距来满足条件;

中间镜像平面和投影镜物平面之间距离可近似地认为固定不变,因此若要荧光屏上得到一张清晰的放大像必须使中间镜的物平面正好和物镜的像平面重合,即通过改变中间镜的励磁电流,使其焦距变化,与此同时,中间镜的物距也随之变化。

大的景深和焦长不仅使透射电镜成像方便,而且电镜设计荧光屏和相机位置非常方便。

27.消像散器的作用和原理是什么?

消像散器的作用就是用来消除像散的。

其原理就利用外加的磁场把固有的椭圆形磁场校正成接近旋转对称的磁场。

机械式的消像散器式在电磁透镜的磁场周围放置几块位置可以调节的导磁体来吸引一部分磁场从而校正固有的椭圆形磁场。

而电磁式的是通过电磁板间的吸引和排斥来校正椭圆形磁场的。

28.何为可动光阑?

第二聚光镜光阑、物镜光阑和选区光阑在电镜的什么位置?

它们各具有什么功能

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 哲学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1