学年最新江西省招生考试数学信息训练卷及答案解析Word文件下载.docx

上传人:b****6 文档编号:19279931 上传时间:2023-01-05 格式:DOCX 页数:16 大小:104.53KB
下载 相关 举报
学年最新江西省招生考试数学信息训练卷及答案解析Word文件下载.docx_第1页
第1页 / 共16页
学年最新江西省招生考试数学信息训练卷及答案解析Word文件下载.docx_第2页
第2页 / 共16页
学年最新江西省招生考试数学信息训练卷及答案解析Word文件下载.docx_第3页
第3页 / 共16页
学年最新江西省招生考试数学信息训练卷及答案解析Word文件下载.docx_第4页
第4页 / 共16页
学年最新江西省招生考试数学信息训练卷及答案解析Word文件下载.docx_第5页
第5页 / 共16页
点击查看更多>>
下载资源
资源描述

学年最新江西省招生考试数学信息训练卷及答案解析Word文件下载.docx

《学年最新江西省招生考试数学信息训练卷及答案解析Word文件下载.docx》由会员分享,可在线阅读,更多相关《学年最新江西省招生考试数学信息训练卷及答案解析Word文件下载.docx(16页珍藏版)》请在冰豆网上搜索。

学年最新江西省招生考试数学信息训练卷及答案解析Word文件下载.docx

6.如图,钓鱼竿AC长6m,露在水面上的鱼线BC长

m,某钓者想看看鱼钓上的情况,把鱼竿AC转动到AC′的位置,此时露在水面上的鱼线B′C′为

m,则鱼竿转过的角度是______.

三、解答题

7.某私立中学准备招聘教职员工60名,所有员工的月工资情况如下:

员工

管理人员

教学人员

人员结构

校长

副校长

部处主任

教研组长

高级教师

中级教师

初级教师

员工人数/人

1

2

4

10

3

每人月工资/元

20000

17000

2500

2300

2200

2000

900

请根据上表提供的信息,回答下列问题:

(1)如果学校准备招聘“高级教师”和“中级教师”共40名(其他员工人数不变),其中高级教师至少要招聘13人,而且学校对高级、中级教师的月支付工资不超过83000元,按学校要求,对高级、中级教师有几种招聘方案?

(2)

(1)中的哪种方案对学校所支付的月工资最少?

并说明理由;

(3)在学校所支付的月工资最少时,将上表补充完整,并求所有员工月工资的中位数和众数.

四、解答题

8.已知抛物线C1:

y=ax2+4ax+4a+b(a≠0,b>0)的顶点为M,经过原点O且与x轴另一交点为A.

(1)求点A的坐标;

(2)若△AMO为等腰直角三角形,求抛物线C1的解析式;

(3)现将抛物线C1绕着点P(m,0)旋转180°

后得到抛物线C2,若抛物线C2的顶点为N,当b=1,且顶点N在抛物线C1上时,求m的值.

五、解答题

9.操作:

如图,边长为2的正方形ABCD,点P在射线BC上,将△ABP沿AP向右翻折,得到△AEP,DE所在直线与AP所在直线交于点F.

探究:

(1)如图1,当点P在线段BC上时,①若∠BAP=30°

,求∠AFE的度数;

②若点E恰为线段DF的中点时,请通过运算说明点P会在线段BC的什么位置?

并求出此时∠AFD的度数.

归纳:

(2)若点P是线段BC上任意一点时(不与B,C重合),∠AFD的度数是否会发生变化?

试证明你的结论;

猜想:

(3)如图2,若点P在BC边的延长线上时,∠AFD的度数是否会发生变化?

试在图中画出图形,并直接写出结论.

参考答案与试题解析

【考点】中心对称图形;

简单几何体的三视图.

【分析】根据各图形的主视图结合中心对称图形的概念求解即可.

【解答】解:

A、主视图为矩形,是中心对称图形,故本选项错误;

B、主视图为等腰三角形,不是中心对称图形,故本选项正确;

C、主视图为圆,是中心对称图形,故本选项错误;

D、主视图为正方形,是中心对称图形,故本选项错误.

故选B.

【考点】一元一次不等式的应用.

【分析】设平均每年行驶的公里数至少为x公里,根据购买的单价和每百公里燃油的成本列出不等式,再进行求解即可.

设平均每年行驶的公里数至少为x公里,根据题意得:

174800+

10≤159800+

10,

解得:

x≥10000.

答:

平均每年行驶的公里数至少为10000公里.

【考点】动点问题的函数图象.

【分析】根据题意可以明确各段对应的y的大小,从而可以解答本题.

由题意可得,

当K在点A处时,y最大,在C处时,y最小,

点K匀速运动,由图2可知,

点K从开始运动到第一次到达的位置一定为点C,第三次到达的位置一定为点A,

故选项B符合,从B→C,y随x的增大而减小,从C→D,y随x的增大而增大,从D→A,y随x的增大而增大,A→B,y随x的增大而减小,

4.如图,某数学兴趣小组将边长为5的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形ABD的面积为 25 .

【考点】扇形面积的计算.

【分析】根据扇形面积公式:

S=

•L•R(L是弧长,R是半径),求出弧长BD,根据题意BD=AD+DC,由此即可解决问题.

由题意

=AD+CD=10,

S扇形ADB=

•AB=

×

10×

5=25,

故答案为25.

,两根铁棒长度之和为220cm,此时木桶中水的深度是 80 cm.

【考点】二元一次方程组的应用;

一元一次方程的应用.

【分析】设水的深度为xcm,根据两根铁棒露出水面的长度占自身长度的比例,可得第一根的长度为

x,另一根的长度为

x,根据两根铁棒长度之和为220cm,列方程求解.

设水的深度为xcm,

由题意得,

x+

x=220,

x=80,

即水深80cm.

故答案为:

80.

m,则鱼竿转过的角度是 15°

 .

【考点】勾股定理的应用.

【分析】因为三角形ABC和三角形AB′C′均为直角三角形,且BC、B′C′都是我们所要求角的对边,所以根据正弦来解题,分别求出∠CAB,∠C′AB′,然后可以求出∠C′AC,即求出了鱼竿转过的角度.

∵sin∠CAB=

=

∴∠CAB=45°

∵sin∠C′AB′=

∴∠C′AB′=60°

∴∠C′AC=60°

﹣45°

=15°

,即鱼竿转过的角度是15°

15°

【考点】中位数;

一元一次不等式的应用;

众数.

【分析】

(1)设高级教师招聘x人,则中级教师招聘(40﹣x)人,根据题目中的不等关系:

学校对高级、中级教师的月支付工资不超过83000元,就可以列出不等式进行求解即可,确定招聘方案.

(2)在高级教师和中级教师招聘的人数确定时,中级教师招聘的人数越多,所需支付的月工资最少.

(3)根据中位数和众数的定义求解.

(1)设高级教师招聘x人,则中级教师招聘(40﹣x)人,依题意得:

2200x+2000(40﹣x)≤83000,求得:

13≤x≤15

∴x=13,14,15

∴学校对高级教师,中级教师有三种招聘方案:

方案一:

高级教师13人,中级教师27人

方案二:

高级教师14人,中级教师26人

方案三:

高级教师15人,中级教师25人.

(2)在招聘高级教师和中级教师人数一定时,招聘中级教师的人越多,所需支付的月工资最少,故当高级教师招聘13人,中级教师招聘27人时,学校所支付的月工资最少,需支付2200×

13+2000×

27=82600元.

(3)如下表:

13

27

在学校所支付的月工资最少时,中位数是2100元,众数是2000元.

【考点】二次函数综合题.

(1)由抛物线经过原点可知当x=0时,y=0,由此可得关于x的一元二次方程,解方程即可求出抛物线x轴另一交点坐标;

(2)由△AMO为等腰直角三角形,抛物线的顶点为M,可求出b的值,再把原点坐标(0,0)代入求出a的值,即可求出抛物线C1的解析式;

(3)由b=1,易求线抛物线C1的解析式,设N(n,﹣1),再由点P(m,0)可求出n和m的关系,当顶点N在抛物线C1上可把N的坐标代入抛物线即可求出m的值.

(1)∵抛物线C1:

y=ax2+4ax+4a+b(a≠0,b>0)经过原点O,

∴0=4a+b,

∴当ax2+4ax+4a+b=0时,则ax2+4ax=0,

x=0或﹣4,

∴抛物线与x轴另一交点A坐标是(﹣4,0);

(2)∵抛物线C1:

y=ax2+4ax+4a+b=a(x+2)2+b(a≠0,b>0),(如图1)

∴顶点M坐标为(﹣2,b),

∵△AMO为等腰直角三角形,

∴b=2,

∵抛物线C1:

y=ax2+4ax+4a+b=a(x+2)2+b过原点,

∴a(0+2)2+2=0,

a=﹣

∴抛物线C1:

y=﹣

x2﹣2x;

(3)∵b=1,抛物线C1:

y=ax2+4ax+4a+b=a(x+2)2+b过原点,(如图2)

∴a=﹣

∴y=﹣

(x+2)2+1=﹣

x2﹣x,

设N(n,﹣1),又因为点P(m,0),

∴n﹣m=m+2,

∴n=2m+2

即点N的坐标是(2m+2,﹣1),

∵顶点N在抛物线C1上,

∴﹣1=﹣

(2m+2+2)2+1,

m=﹣2+

或﹣2﹣

【考点】四边形综合题.

(1)当点P在线段BC上时,①由折叠得到一对角相等,再利用正方形性质求出∠DAE度数,在三角形AFD中,利用内角和定理求出所求角度数即可;

②由E为DF相等,得到P为BC中点,如图1,连接BE交AF于点O,作EG∥AD,得EG∥BC,得到AF垂直平分BE,进而得到三角形BOP与三角形EOG全等,利用全等三角形对应边相等得到BP=EG=1,得到P为BC中点,进而求出所求角度数即可;

(2)若点P是线段BC上任意一点时(不与B,C重合),∠AFD的度数不会发生变化,理由为:

作AG⊥DF于点G,如图1(a)所示,利用折叠的性质及三线合一性质,根据等式的性质求出∠1+∠2的度数,即为∠FAG度数,即可求出∠F度数;

(3)作出相应图形,如图2所示,若点P在BC边的延长线上时,∠AFD的度数不会发生变化,理由为:

作AG⊥DE于G,得∠DAG=∠EAG,设∠DAG=∠EAG=α,根据∠FAE为∠BAE一半求出所求角度数即可.

(1)①∵∠EAP=∠BAP=30°

∴∠DAE=90°

﹣30°

2=30°

在△ADE中,AD=AE,∠DAE=30°

∴∠ADE=∠AED=÷

2=75°

在△AFD中,∠FAD=30°

+30°

=60°

,∠ADF=75°

∴∠F=180°

﹣60°

﹣75°

=45°

②点E为DF的中点时,P也为BC的中点,理由如下:

如图1,连接BE交AF于点O,作EG∥AD,得EG∥BC,

∵EG∥AD,DE=EF,

∴EG=

AD=1,

∵AB=AE,

∴点A在线段BE的垂直平分线上,

同理可得点P在线段BE的垂直平分线上,

∴AF垂直平分线段BE,

∴OB=OE,

∵GE∥BP,

∴∠OBP=∠OEG,∠OPB=∠OGE,

∴△BOP≌△EOG,

∴BP=EG=1,即P为BC的中点,

∴∠DAF=90°

﹣∠BAF,∠ADF=45°

+∠BAF,

∴∠AFD=180°

﹣∠DAF﹣∠ADF=45°

(2)∠AFD的度数不会发生变化,

证明:

作AG⊥DF于点G,如图1(a)所示,

在△ADE中,AD=AE,AG⊥DE,

∵AG平分∠DAE,即∠2=∠DAG,且∠1=∠BAP,

∴∠1+∠2=

90°

,即∠FAG=45°

则∠F=90°

(3)如图2所示,∠AFE的大小不会发生变化,∠AFE=45°

作AG⊥DE于G,得∠DAG=∠EAG,

设∠DAG=∠EAG=α,

∴∠BAE=90°

+2α,

∴∠FAE=

∠BAE=45°

+α,

∴∠FAG=∠FAE﹣∠EAG=45°

在Rt△AFG中,∠AFE=90°

2016年9月24日

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿教育 > 幼儿读物

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1