二次函数与平行四边形存在性问题Word格式.docx

上传人:b****6 文档编号:19273923 上传时间:2023-01-05 格式:DOCX 页数:13 大小:172.94KB
下载 相关 举报
二次函数与平行四边形存在性问题Word格式.docx_第1页
第1页 / 共13页
二次函数与平行四边形存在性问题Word格式.docx_第2页
第2页 / 共13页
二次函数与平行四边形存在性问题Word格式.docx_第3页
第3页 / 共13页
二次函数与平行四边形存在性问题Word格式.docx_第4页
第4页 / 共13页
二次函数与平行四边形存在性问题Word格式.docx_第5页
第5页 / 共13页
点击查看更多>>
下载资源
资源描述

二次函数与平行四边形存在性问题Word格式.docx

《二次函数与平行四边形存在性问题Word格式.docx》由会员分享,可在线阅读,更多相关《二次函数与平行四边形存在性问题Word格式.docx(13页珍藏版)》请在冰豆网上搜索。

二次函数与平行四边形存在性问题Word格式.docx

教学

重点

【知识梳理】

1、平行四边形的性质是什么?

2、在坐标系中,平行四边形又有哪些性质?

3、解决问题的策略:

①根据要求画出满足要求的图形,然后根据几何性质计算未知量

②分类讨论,根据对角线“共中点”的性质直接计算。

1.(2011•盘锦)如图,二次函数y=ax2+bx的图象经过A(1,﹣1)、B(4,0)两点.

(1)求这个二次函数解析式;

(2)点M为坐标平面内一点,若以点O、A、B、M为顶点的四边形是平行四边形,请直接写出点M的坐标.

 

2.(2010•陕西)在平面直角坐标系中,抛物线A(﹣1,0),B(3,0),C(0,﹣1)三点.

(1)求该抛物线的表达式;

(2)点Q在y轴上,点P在抛物线上,要使Q、P、A、B为顶点的四边形是平行四边形,求所有满足条件点P的坐标.

3.(2011•阜新)如图,抛物线y=

x2+x﹣

与x轴相交于A、B两点,顶点为P.

(1)求点A、B的坐标;

(2)在抛物线是否存在点E,使△ABP的面积等于△ABE的面积,若存在,求出符合条件的点E的坐标;

若不存在,请说明理由;

(3)坐标平面内是否存在点F,使得以A、B、P、F为顶点的四边形为平行四边形,直接写出所有符合条件的点F的坐标.

4.(2007•玉溪)如图,已知二次函数图象的顶点坐标为C(1,0),直线y=x+m与该二次函数的图象交于A、B两点,其中点A的坐标为(3,4),点B在y轴上。

(1)求m的值及这个二次函数的关系式;

(2)P为线段AB上的一个动点(点P与A、B不重合),过P点作x轴的垂线交二次函数图象于点E,设线段PE的长为h,点P的横坐标为x,求h与x之间的函数关系式,并写出自变量x的取值范围;

(3)D为直线AB与二次函数图象对称轴的交点,在线段AB上是否存在一点P,使得四边形DCEP是平行四边形?

若存在,求点P的坐标;

若不存在,请说明理由。

5.(2011•淄博)抛物线y=ax2+bx+c与y轴交于点C(0,﹣2),与直线y=x交于点A(﹣2,﹣2),B(2,2).

(1)求抛物线的解析式;

(2)如图,线段MN在线段AB上移动(点M与点A不重合,点N与点B不重合),且MN=

,若M点的横坐标为m,过点M作x轴的垂线与抛物线交于点P,过点N作x轴的垂线与抛物线交于点Q.以点P,M,Q,N为顶点的四边形能否为平行四边形?

若能,请求出m的值;

若不能,请说明理由.

6.(2011•内江)如图抛物线y=

x2﹣mx+n与x轴交于A、B两点,与y轴交于点C(0.﹣1).且对称抽x=l.

(1)求出抛物线的解析式及A、B两点的坐标;

(2)在x轴下方的抛物线上是否存在点D,使四边形ABDC的面积为3.若存在,求出点D的坐标;

若不存在.说明理由(使用图1);

(3)点Q在y轴上,点P在抛物线上,要使Q、P、A、B为顶点的四边形是平行四边形,请求出所有满足条件的点P的坐标(使用图2). 

7.(2011•凉山州)如图,抛物线与x轴交于A(x1,0)、B(x2,0)两点,且x1<x2,与y轴交于点C(0,﹣4),其中x1,x2是方程x2﹣4x﹣12=0的两个根.

(2)点M是线段AB上的一个动点,过点M作MN∥BC,交AC于点N,连接CM,当△CMN的面积最大时,求点M的坐标;

(3)点D(4,k)在

(1)中抛物线上,点E为抛物线上一动点,在x轴上是否存在点F,使以A、D、E、F为顶点的四边形是平行四边形,如果存在,求出所有满足条件的点F的坐标,若不存在,请说明理由.

8.(2011•衡阳)已知抛物线

(1)试说明:

无论m为何实数,该抛物线与x轴总有两个不同的交点.

(2)如图,当抛物线的对称轴为直线x=3时,抛物线的顶点为点C,直线y=x﹣1与抛物线交于A、B两点,并与它的对称轴交于点D.

①抛物线上是否存在一点P使得四边形ACPD是正方形?

若存在,求出点P的

坐标;

若不存在,说明理由;

②平移直线CD,交直线AB于点M,交抛物线于点N,通过怎样的平移能使得以C、D、M、N为顶点的四边形是平行四边形.

9.(2010•龙岩)如图,抛物线交x轴于点A(﹣2,0),点B(4,0),交y轴于点C(0,﹣4).

(1)求抛物线的解析式,并写出顶点D的坐标;

(2)若直线y=﹣x交抛物线于M,N两点,交抛物线的对称轴于点E,连接BC,EB,EC.试判断△EBC的形状,并加以证明;

(3)设P为直线MN上的动点,过P作PF∥ED交直线MN下方的抛物线于点F.问:

在直线MN上是否存在点P,使得以P、E、D、F为顶点的四边形是平行四边形?

若存在,请求出点P及相应的点F的坐标;

若不存在,请说明理由.

10.(2010•河南)在平面直角坐标系中,已知抛物线经过A(﹣4,0),B(0,﹣4),C(2,0)三点.

(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S、求S关于m的函数关系式,并求出S的最大值.

(3)若点P是抛物线上的动点,点Q是直线y=﹣x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.

11.(2010•包头)已知二次函数y=ax2+bx+c(a≠0)的图象经过点A(1,0),B(2,0),C(0,﹣2),直线x=m(m>2)与x轴交于点D.

(1)求二次函数的解析式;

(2)在直线x=m(m>2)上有一点E(点E在第四象限),使得E、D、B为顶点的三角形与以A、O、C为顶点的三角形相似,求E点坐标(用含m的代数式表示);

(3)在

(2)成立的条件下,抛物线上是否存在一点F,使得四边形ABEF为平行四边形?

若存在,请求出m的值及四边形ABEF的面积;

12.(2010•茂名)如图,在直角坐标系xOy中,正方形OCBA的顶点A,C分别在y轴,x轴上,点B坐标为(6,6),抛物线y=ax2+bx+c经过点A,B两点,且3a﹣b=﹣1.

(1)求a,b,c的值;

(2)如果动点E,F同时分别从点A,点B出发,分别沿A→B,B→C运动,速度都是每秒1个单位长度,当点E到达终点B时,点E,F随之停止运动,设运动时间为t秒,△EBF的面积为S.

①试求出S与t之间的函数关系式,并求出S的最大值;

②当S取得最大值时,在抛物线上是否存在点R,使得以E,B,R,F为顶点的四边形是平行四边形?

如果存在,求出点R的坐标;

如果不存在,请说明理由.

13.(2005•福州)已知:

抛物线y=x2-2x-3与y轴交于C点,C点关于抛物线对称轴的对称点为C/点。

(1)求点C/的坐标;

(2)如果点Q在抛物线的对称轴上,点P在抛物线上,以点C、C/、P、Q为顶点的四边形是平行四边形,求P点和Q点的坐标;

(3)在

(2)的条件下,求出平行四边形的周长。

14.(2011•湛江)如图,抛物线y=x2+bx+c的顶点为D(﹣1,﹣4),与y轴交于点C(0,﹣3),与x轴交于A,B两点(点A在点B的左侧).

(2)连接AC,CD,AD,试证明△ACD为直角三角形;

(3)若点E在抛物线的对称轴上,抛物线上是否存在点F,使以A,B,E,F为顶点的的四边形为平行四边形?

若存在,求出所有满足条件的点F的坐标;

15.(2011•威海)如图,抛物线y=ax2+bx+c交x轴于点A(﹣3,0),点B(1,0),交y轴于点E(0,﹣3).点C是点A关于点B的对称点,点F是线段BC的中点,直线l过点F且与y轴平行.直线y=﹣x+m过点C,交y轴于D点.

(1)求抛物线的函数表达式;

(2)点K为线段AB上一动点,过点K作x轴的垂线与直线CD交于点H,与抛物线交于点G,求线段HG长度的最大值;

(3)在直线l上取点M,在抛物线上取点N,使以点A,C,M,N为顶点的四边形是平行四边形,求点N的坐标.

16.(2010•遵义)如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(2,﹣1),且与y轴交于点C(0,3),与x轴交于A,B两点(点A在点B的右侧),点P是该抛物线上的一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD∥y轴,交AC于点D.

(1)求该抛物线的函数关系式;

(2)当△ADP是直角三角形时,求点P的坐标;

(3)在题

(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?

若存在,求点F的坐标;

17.(2010•武汉)如图,抛物线y1=ax2﹣2ax+b经过A(﹣1,0),C(0,

)两点,与x轴交于另一点B.

(1)求此抛物线的解析式;

(2)若抛物线的顶点为M,点P为线段OB上一动点(不与点B重合),点Q在线段MB上移动,且∠MPQ=45°

,设线段OP=x,MQ=

y2,求y2与x的函数关系式,并直接写出自变量x的取值范围.

(3)在同一平面直角坐标系中,两条直线x=m,x=n分别与抛物线交于点E、G,与

(2)中的函数图象交于点F、H.问四边形EFHG能否成为平行四边形?

若能,求m、n之间的数量关系;

18.(2009•荆州)如图①,已知两个菱形ABCD和EFGH是以坐标原点O为位似中心的位似图形(菱形ABCD与菱形EFGH的位似比为2︰1),∠BAD=120°

,对角线均在坐标轴上.抛物线

经过AD的中点M.

(1)直接写出A、D两点的坐标;

(2)操作:

如图②,固定菱形ABCD,将菱形EFGH绕O点顺时针方向旋转

度角

,并延长OE交AD于P,延长OH交CD于Q.

探究1:

在旋转的过程中是否存在某一角度

,使得四边形AFEP是平行四边形?

若存在,请推断出

的值;

探究2:

设AP=

,四边形OPDQ的面积为

,求

之间的函数关系式,并指出

的取值范围.

课后小结

上课情况:

课后需再巩固的内容:

配合需求:

家长_________________________________

学管师_________________________________

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 考试认证 > 财会金融考试

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1