制冷机房课程设计说明书文档格式.docx

上传人:b****6 文档编号:19044583 上传时间:2023-01-03 格式:DOCX 页数:27 大小:244.69KB
下载 相关 举报
制冷机房课程设计说明书文档格式.docx_第1页
第1页 / 共27页
制冷机房课程设计说明书文档格式.docx_第2页
第2页 / 共27页
制冷机房课程设计说明书文档格式.docx_第3页
第3页 / 共27页
制冷机房课程设计说明书文档格式.docx_第4页
第4页 / 共27页
制冷机房课程设计说明书文档格式.docx_第5页
第5页 / 共27页
点击查看更多>>
下载资源
资源描述

制冷机房课程设计说明书文档格式.docx

《制冷机房课程设计说明书文档格式.docx》由会员分享,可在线阅读,更多相关《制冷机房课程设计说明书文档格式.docx(27页珍藏版)》请在冰豆网上搜索。

制冷机房课程设计说明书文档格式.docx

1.2原始资料以及设计要求

本设计为福州市贾家庄度假村酒店空气调节工程设计该建筑是一幢集宾馆及办公为一体的综合性大楼。

建筑总面积5905㎡,建筑总高度18.3m。

本设计内容主要为办公及宾馆的空调冷源设计。

本次设计中,对于一层大空间区域采用了全空气系统。

公共卫生间采用轴流风机排风。

其他楼层选择风机盘管加独立新风系统来进行不同房间的热湿处理。

1)设计参数

夏季空调室外参数:

东经

103.88

北纬

36

夏季大气压(Pa)

84310

夏季空调室外干球温度

30.5

夏季空调室外湿球温度

20.2

夏季空调日平均温度

25.8

夏季室外平均风速(m/s)

1.3

2)夏季室内参数:

室内设计温度26℃,相对湿度61%。

旅馆室是多功能的建筑,包括客房,多功能会议厅以及办公楼,考虑不同

房间不同建筑面积冷负荷估算指标,我取一楼大厅为100W/㎡,二楼及以上房间取60W/㎡根据公式Q=AM

A—建筑总面积

M—单位面积冷负荷

经过估算,建筑总冷负荷为402.052KW

1.3方案设计

该机房制冷系统为四管制系统,即冷却水供/回水管、冷冻水供/回水管系统。

经冷水机组制冷后的7℃的冷冻水通过冷冻水供水管分别送往旅馆的各个区域,经过空调机组后的12℃的冷冻水回水由冷冻水回水管返回冷水机组,通过冷水机组中的蒸发器与制冷剂换热实现降温过程。

从冷水机组出来的37℃的冷却水经冷却水供水管到达冷却塔,经冷却塔冷却后降温后再返回冷水机组冷却制冷剂,如此循环往复。

考虑到系统的稳定安全高效地运行,系统中配备补水系统,软化水系统,全程水处理系统等附属系统。

第二章制冷机组的选型

2.1、确定机房的总制冷量

制冷系统的总制冷量,应该包括用户实际所需要的制冷量,以及制冷系统本身和供冷系统冷损失,可按下式计算:

Q0=(1+A)Q=(1+0.15)×

402.052=462.360KW

式中Q0——制冷系统的总制冷量(KW)

Q——用户实际所需要的制冷量(KW)

A——冷损失附加系数

一般对于间接供冷系统,当空调制冷量小于174KW时,A=0.15~0.20;

当空调制冷量为174~1744KW时,A=0.10~0.15;

当空调制冷量大于1744KW时,A=0.05~0.07;

对于直接供冷系统,A=0.05~0.07。

为保证候机楼冷负荷在最不利情况下得到充分补充,这里选取最大值15%。

2.2、制冷机组选择原则

2.2.1要合理选定机型和台数,须考虑以下因素或原则。

(1)建筑物的冷负荷大小,全年冷负荷的分布规律;

(2)当地的水源(包括水量、水温及水质)、电源和热源(包括热源性质、品位高低)情况;

(3)初投资和运行费用;

(4)冷水机组的特性(包括性能系数、尺寸大小、调节性能、价格、冷量范围及使用工质等)。

2.2.2选择冷水机组时,除了考虑上述原则外,还应根据具体情况注意以下几点:

(1)台数一般以选用2~4台为宜,中小型规模宜选用2台,较大型可选用3台,特大型可选用4台,机组之间要考虑互为备用和切换使用的可能性;

(2)同一机房内可选用不同类型、不同容量的机组搭配的组合方案,以节约能耗。

并联运行的机组中至少应选择一台自动化程度较高,调节性能较好,能保证部分负荷下能高效运行的机组;

(3)对有合适热源特别是有余热或废热的场所或电力缺乏的场所,宜采用吸收式冷水机组;

(4)选择电力驱动的冷水机组,当单机制冷量大于1163kW时,宜选用离心式;

当单机制冷量在582kW~1163kW之间时,宜选用离心式或螺杆式;

当单机制冷量小于582kW时,宜选用活塞式;

选用

活塞式冷水机组时,宜优先选用多机头自动联控的冷水机组;

根据建筑物用途、冷量特点及投资费用等实际情况综合考虑决定是否配备备用机组。

根据以上计算及选型原则。

本设计课以选择螺杆式机组作为制冷机组,根据以上的标准,本设计宜采用2台容量相同的螺杆机组。

,所以,每台制冷机组的容量应该为462.360÷

2=231.180kw

开启式、封闭式、半封闭式螺杆压缩机的比较

序号

项目

开启式

封闭式

半封闭式

备注

1

单机COP值

单机COP较高4.6~5.6,但机房降温需消耗额外的能量

较低4.6~5.2

2

可维修性

方便维修

不方便维修,如需维修则需破坏压缩机外壳。

维修之前不方便维修打价

3

系统泄漏

因为电机与压缩机用轴传动,故机组内的冷冻机油和冷媒不可避免的产生泄漏问题,需经常添加冷媒和冷冻机油。

因电机和压缩机在一个壳体内,不存在泄露问题

4

是否需要轴封

需要

不需要

是否存在轴对中的问题

开启式压缩机由于电机轴与压缩机轴温度不同造成不同膨胀量而引起轴不对中、破坏轴封的问题

不存在

5

主机房降温处理措施

因为开启式压缩机的电机冷却是靠空气冷却,电机散发的热量全部散入到主机房,考虑到机组的运行和操作人员的原因,故主机房必须做降温和通风处理。

如550RT的机组输入功率370KW,电机效率90%,则发热量为37KW,需要给机房配置一台15HP的空调来降温

只需要做普通的通风处理,以供给新风

6

对电网的冲击

启动电流大,对电网冲击大,需用户增加价格昂贵的软启动或变频装置来降低对电网的冲击

启动电流小,对电网冲击小

7

运转噪音

因电机外露,噪音大

噪音较小

噪音小

8

在市场上所占份额

非主流产品,市场上只有1到2家做

主流产品,占市场80%以上

综合考虑经济﹑制冷要求、选用的制冷工质﹑运行管理及对制冷量调节、噪音等方面的因素,本制冷系统选用半封闭螺杆制冷压缩机。

2.3、制冷机组的选型

1)制冷机组的型号选择

根据上述所计算的制冷系统的总负荷,结合不同厂家的不同型号的机型的对比,我选择了开利30XHY065A型半封闭螺杆制冷压缩机来满足建筑要求。

2)30XHY065A的具体参数。

型号

30XHY065A

0552

名义制冷量

KW

236

USRT

154

COP

KW/KW

4.7

最小冷量

%

40

压缩机

回路A

数量

回路B

-

蒸发器

进出水温度

12/7

流量

m3/h

41

水压降

Kpa

94

进出口径

Dg

80

冷凝器

30/35

49

97

100

电机

电源

380V-3ph-50hz(一路进线)

额定工况电流

A

额定输入功率

50

R134a

充注量

Kg

59

机组重量(含冷媒和包装箱)

1750

运行重量

1900

外形尺寸

Mm

2194

950

1875

第三章冷冻水系统的设计

3.1系统形式

3.1.1冷冻水系统的基本形式

(1)双管制、三管制和四管制系统

1)双管制系统夏季供应冷冻水、冬季供应热水均在相同管路中进行。

优点是系统简单,初投资少。

绝大多数空调冷冻水系统采用双管制系统。

但在要求高的全年空调建筑中,过渡季节出现朝阳房间需要供冷而背阳房间需要供热的情况,这时改系统不能满足要求。

2)三管制系统分别设置供冷、供热管路,冷热回水管路共用。

优点是能同时满足供冷供热的要求,管路系统较四管制简单。

其最大特点是有冷热混合损失,投资高于两管制,管路复杂。

3)四管制系统供冷、供热分别由供回水管分开设置,具有冷热两套独立的系统。

优点是能同时满足供冷、供热要求,且没有冷热混合损失。

缺点是初投资高,管路系统复杂,且占有一定的空间。

(2)开式和闭式系统

1)开式水系统与蓄热水槽连接比较简单,但水中含氧量较高,管路和设备易腐蚀,且为了克服系统静水压头,水泵耗电量大,仅适用于利用蓄热槽的低层水系统。

2)闭式水系统不与大气相接触,仅在系统最高点设置膨胀水箱。

管路系统不易产生污垢和腐蚀,不需克服系统静水压头,水泵耗电较小。

(3)同程式和异程式系统

1)同程式水系统除了供回水管路以外,还有一根同程管,由于各并联环路的管路总长度基本相等,各用户盘管的水阻力大致相等,所以系统的水力稳定性好,流量分配均匀。

高层建筑的垂直立管通常采用同程式,水平管路系统范围大时宜尽量采用同程式

2)异程式水系统管路简单,不需采用同程管,水系统投资较少,但水量分配。

调节较难,如果系统较小,适当减小公共管路的阻力,增加并联支管的阻力,并在所有盘管连接支路上安装流量调节阀平衡阻力,亦可采用异程式布置。

(4)定流量和变流量系统

1)定流量水系统中的循环水量保持定值,负荷变化时可以通过改变风量或改变供回水温度进行调节,例如用供回水支管上三通调节阀,调节供回水量混合比,从而调节供水温度,系统简单操作方便,不需要复杂的自控设备,缺点是水流量不变输送能耗始终为设计最大值。

2)变流量水系统中供回水温度保持定值,负荷改变时,通过改变供水量来调节。

输送能耗随负荷减少而降低,水泵容量和电耗小,系统需配备一定的自控装置。

(5)单式泵和复式泵系统

1)单式泵水系统的冷热源侧和负荷侧只有一组循环水泵,系统简单初投资省,这种系统不能调节水泵流量,不能节省水泵输送能量。

2)复式泵水系统的冷热源侧和负荷侧分别设置循环水泵,可以实现负荷侧水泵变流量运行,能节省输送能耗,并能适应供水分区不同压降的需要,系统总的压力低。

但系统较复杂,初投资高。

3.1.2

系统形式确定

全空气系统中,采用圆形散流器顶送方式,单层百叶回风形式,公共卫生间采用轴流风机排风。

其他层主要求为住宿和办公房间,考虑到方便性和噪音的控制,我选择风机盘管加独立新风系统来进行不同房间的热湿处理,送风口为可控送风口的双层百叶风口,回采用单层百

3.2冷冻水系统的设计

管内流速的假定依据[2]P340

DN/mm

<

250

>

=250

出水管的流速m/s

1.5~2.0

2.0~2.5

进水管的流速m/s

1.0~1.2

1.2~1.6

1)冷冻水循环系统水力计算;

冷冻水泵采两用用一备,且流量分配比例为50%,50%,,以下计算水泵进出口管径计算

体积流量

冷冻水量w确定W=

=

=0.0221m3/s

式中:

—冷却剂的定压比热,水为4.186KJ/Kg.℃;

ρ—水的密度,为1000kg/

水泵进水管:

两用假定冷冻水的进口流速为1.5m/s

d=103

[2]P811

L=0.0221×

50%=0.01105m3/s,单台机组管径d1=91mm,取100mm,则管段流速为v=1.4m/s

水泵出水管:

假定冷冻水的出口流速为2.0m/s

d=103

50%=0.01105m3/s,单台机组总管d1=84mm,取80mm,则管段流速为v=2.2m/s

总管管径计算

假定冷冻水的出口流速为1.6m/s

L==0.0221m3/s,管径d1=133mm,取125mm,则管段流速为v=1.25m/s

2)循环水泵的选择

流量L=(1.1~1.2)0.01105=0.01206~0.01326m3/s

扬程H=A(H1+H2+H3+H4)

H1扬程阻力损失;

H2局部阻力损失;

KPa

H3蒸发器内的阻力损失;

Kpa;

(94Kpa)

H4用户末端阻力损失;

Kpa(33Kpa)

A附加系数1.1~1.2

H1=LRm

L-最不利环路管段的长度;

m

R-环路的经济比摩阻,通常取200~400Pa;

本次设计取300Pa

H1=LRm=2×

(18.3+8.8+38.1)×

300=39120Pa=3.912m

截止阀

0.3

止回阀

DN

200

300

ξ

3.9

3.4

0.1

蝶阀

0.1—0.3

压力表

水泵入口

1.0

过滤器

2.0-3.0

除污器

4.0-6.0

出水口

0.5

用到的三通

局部阻力公式如下:

ΔP=ξ*ρ*v²

/2

冷冻水系统的局部阻力部件如下;

8个碟阀、1个止回阀、12个普通弯头、22个三通管、水泵入口损失、1个过滤器、12个四通、6个压力表

则ξ=8×

0.2+1×

0.3+12×

0.15+22×

0.1+1×

1+1×

2.5+12×

1+6×

0.3=21.6

/2=21.6×

1000×

1.98²

/2=42340Pa=4.234m

因此冷却水泵所需的扬程H=H1+H2+H3+H4=3.912+4.234+9.4+3.3m=20.846

Hmax=(1.10~1.15)H则Hmax=(1.10~1.15)×

15.646=22.93~23.97m[6]P1180

(3)冷冻水泵的选择:

[8]P10P16

根据以上所得流量和扬程,选择三台SB型单级离心泵(两用一备),水泵具体参数为:

型号SB65—50—135,流量Q=45m3/h,扬程H=23.4m,转速r=2900r/min,电动机功率W=5.5Kw,效率η=70%,必需气蚀余量4.5m

第四章冷却水系统的设计

4.1冷却塔选型

1)冷却塔选型须根据建筑物的功能、场地情况、周围环境条件与平面布局的因素综合考虑。

对塔形的选择还要考虑当地的气象参数、冷却塔进出水温度、冷却水量、水质以及噪声、散热和水雾对周围环境的影响,经济技术比较确定。

2)冷却水量的确定如下

G=KQ。

/C(tw1-tw2)

G-冷却水量,Kg/s

Q。

-冷水机组的制冷量,KW

C-水的比热容,KJ/(KG·

℃)

k-制冷机耗功的热量系数;

对于蒸汽式压缩机,可取1.2~1.3

tw1、tw2-冷却塔的进、出水温度,℃

则G=KQ。

/C(tw1-tw2)=1.2×

472/4.186×

(37-32)=27.06kg/s

=0.02706m3/s=97.42m3/h

冷却塔的补水量包括;

蒸发损失、飘逸损失、排污损失和泄漏损失。

压缩式制冷可取补水率为循环水量的2%,吸收式制冷可取补水率为循环水量的补水2.5%,

3)补水位置;

不设积水箱的系统应在冷却塔的地盘处,此时应要求冷却塔的底盘加高200mm;

设积水箱的系统应在积水箱处。

4)冷却塔的控制调节应采用双速风机或变频调速来实现。

由以上计算知冷却塔所承担的冷却水量为G=97.42m3/h根据相关资料选用开放式逆流式冷却塔冷却塔的选择,特点是安装面积小,高度大,适用于高度不受限制的场合,冷却水的进水温度为32℃,出水温度为37℃,

根据“一塔对一机”选择两台冷却塔且不考虑备用,冷却塔的处理水流量应大于冷水机组的冷却水流量,考虑1.2的安全系数[12]且冷却水的流量为48.7m³

/h所以冷却塔的设计处理水量为L=58.4m³

/h。

型号如下表所示:

处理水量/(m3/h)

电量/kw

进塔水压/Kpa

外形寸/(mm*mm*mm)

质量/kg

RTC-60L-C1

60

25

2000×

2950×

2180

720

4.2冷却水系统的设计

1)冷却水循环系统水力计算;

冷却水泵采用两用一备,且流量分配比例为50%,50%,以下计算水泵进出口管径计算

假定冷却水的进口流速为1.2m/s

L=0.0271/2=0.01355m3/s,机组管径d1=119mm,取125mm,则管段流速为v=1.10m/s

水泵出水管

假定冷却水的出口流速为2.0m/s

L=0.0271/2=0.01355m3/s,机组管径d1=93mm,取100mm,则管段流速为v=1.73m/ss

假定冷却水的出口流速为1.7m/s

L==0.0271m3/s,管径d1=138mm,取150mm,则管段流速为v=1.54m/s

2)冷却水泵的选择

流量L=(1.1~1.2)×

0.01355=0.0149~0.0163m3/s

扬程的计算:

(开式系统)

H=H1+H2+H3+H4+H5

H—冷却水泵的扬程

H1—冷却水系统的沿程损失

H2—局部阻力水头损失

H3—冷凝器内部阻力水头损失(m),这里取5.2m(冷凝器水压降97kpa=9.7m)

H4—冷却塔中水的提升高度(m),这里取3.25m

H5—冷却塔的喷嘴雾压力水头,常取5m

H1=LRm=(18.3+8.8+38.1)×

变径管

渐缩

0.1(对应小断面流速)

渐扩

0.3(对应小断面流速)

焊接弯头90°

150

0.51

0.63

0.72

水箱接管进水口

6个碟阀、1个止回阀、2个过滤器、2个焊接弯头、3个普通弯头、4个三通管、1个除污器、水泵入口损失

则ξ=6×

0.3+2×

2.5+2×

0.72+3×

0.15+4×

5+1×

1=14.79

/2=14.79×

/2=28991Pa=2.9m

因此冷却水泵所需的扬程H=H1+H2+H3+H4+H5=24.762m。

20.262=27.17~28.4m

(3)冷却水泵的选择:

型号SB65—50—152,流量Q=50m3/h,扬程H=29.8m,转速r=2900r/min,电动机功率W=7.5Kw,效率η=71%,必需气蚀余量3.7m

第五章其他设计

5.2软化水箱及补水泵的选择

1)补水定压系统的形式,

这次空调课设的冷冻水补水定压装置我选用落地式膨胀水箱来实现冷冻水系统的补水和定压过程。

2)补水水量,

空调水系统单位水容量(L/㎡)

全空气系统

水/空气系统

0.45

(本楼一层为全空气系统,其他楼层为水/空气系统)

冷冻水补水泵总设计补水量为:

补水系统的总小时补水量为补给水(系统水容量)的5%,系统水计算的

3)补水泵的扬程,

冷冻水补水泵的扬程,应保证补水压力比系统静止时补水点的压力高30~50kPa。

定压点宜设在循环水泵的吸入口处,定压点最低压力应使管道系统任何一点的表压均应高于大气压力5kPa以上。

单台泵设计扬程为:

H为地下一层到顶层九层的垂直高度;

R为比摩阻取300Pa/m[14]124页;

l为补水泵到定压点水平管长;

4)补给水管道管径

假设最大流速为1.8m/s,根据公式

V=vA

V—是体积流量,m3/s

A—管道截面面积,25%∏D2,m2

计算的管径为D=44mm,

实际取50mm(水泵吸入口对流速的要求),校对的流速为1.36m/s。

5)落地膨胀水箱的有效容积。

精确公式:

V≥Vmin=ɡ*Vt/(1-

公式中,V—气压罐的实际总容积(m3),

Vmin—气压罐最小总容积(m3)

Vt—气压罐调节容积。

不宜小于3min平时运行的补水泵流量(m3),0.075m3。

ɡ—容积附加系数1.05

——

分别为补水泵启动压力和停泵压力(表压,kpa),应综合考虑气压罐容积和系统的最高工作运行压力的因素取值,宜取0.65~0.85,必要时可去0.5~0.9。

带入计算的最小取0.315m3。

立式气压罐定压设备技术特性表

立式(囊式)气压罐

设备

规格

罐体直径

高(mm)

总容

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 自然科学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1