红外自动循迹小车Word格式.docx

上传人:b****6 文档编号:18936354 上传时间:2023-01-02 格式:DOCX 页数:16 大小:366.96KB
下载 相关 举报
红外自动循迹小车Word格式.docx_第1页
第1页 / 共16页
红外自动循迹小车Word格式.docx_第2页
第2页 / 共16页
红外自动循迹小车Word格式.docx_第3页
第3页 / 共16页
红外自动循迹小车Word格式.docx_第4页
第4页 / 共16页
红外自动循迹小车Word格式.docx_第5页
第5页 / 共16页
点击查看更多>>
下载资源
资源描述

红外自动循迹小车Word格式.docx

《红外自动循迹小车Word格式.docx》由会员分享,可在线阅读,更多相关《红外自动循迹小车Word格式.docx(16页珍藏版)》请在冰豆网上搜索。

红外自动循迹小车Word格式.docx

红外探测器探测距离有限,

2.2控制系统总体设计

自动循迹小车控制系统由主控制电路模块、稳压电源模块、红外检测模块、电机及驱动模块等部分组成,控制系统的结构框图如图2-1所示。

1、主控制电路模块:

用AT89C51单片机、复位电路,时钟电路

2、红外检测模块:

光电传感器ST188,比较器LM324

3、电机及驱动模块:

电机驱动芯片L298N、两个直流电机

4、电源模块:

双路开关电源

3.系统方案

3.1寻迹传感器模块

ST系列反射式光电传感器是经常使用的传感器。

这个系列的传感器种类齐全、价格便宜、体积小、使用方便、质量可靠、用途广泛。

我们采用ST188作为红外检测传感器。

在黑线检测的测试中,若检测到白色区域,发射管发射的红外线没有反射到接收管,测量接收管的电压为4.8V,若检测到黑色区域,接收管接受到发射管发射的红外线,电阻发生变化,所分得的电压也就随之发生变化,测的接收管的电压为0.5V,测试基本满足要求。

判断有无黑线我们用的一块比较器LM324,比较基准电压由30K的变阻器调节,各个接收管的参数都不一致,每个传感器的比较基准电压也不尽相同,我们为每个传感器配备了一个变阻器。

3.1.1红外传感器ST188简介

含一个反射模块(发光二极管)和一个接收模块(光敏三极管)。

通过发射红外信号,看接收信号变化判断检测物体状态的变化。

A、K之间接发光二极管,C、E之间接光敏三极管(二者在电路中均正接,但要串联一定阻值的电阻)

图3-1ST188实物图图3-2ST188管脚图及内部电路

3.1.2比较器LM324简介

LM324为四运放集成电路,采用14脚双列直插塑料封装。

内部有四个运算放大器,有相位补偿电路。

电路功耗很小,工作电压范围宽,可用正电源3~30V,或正负双电源±

1.5V~±

15V工作。

在黑线检测电路中用来确定红外接收信号电平的高低,以电平高低判定黑线有无。

在电路中,LM324的一个输入端需接滑动变阻器,通过改变滑动变阻器的阻值来提供合适的比较电压。

图3-3LM324内部电路图3-4集成运放的管脚图

3.1.3具体电路

通过ST188检测黑线,输出接收到的信号给LM324,接收电压与比较电压比较后,输出信号变为高低电平,再输入到单片机中,用以判定是否检测到黑线。

图3-5传感器模块电路图

3.1.4传感器安装

在小车具体的循迹行走过程中,为了能精确测定黑线位置并确定小车行走的方向,需要同时在底盘装设4个红外探测头,进行两级方向纠正控制,提高其循迹的可靠性。

这4个红外探头的具体位置如图3-6所示。

图3-6传感器安装图

图中循迹传感器全部在一条直线上。

其中X1与Y1为第一级方向控制传感器,X2与Y2为第二级方向控制传感器,并且黑线同一边的两个传感器之间的宽度不得大于黑线的宽度。

小车前进时,始终保持(如图3-6中所示的行走轨迹黑线)在X1和Y1这两个第一级传感器之间,当小车偏离黑线时,第一级传感器就能检测到黑线,把检测的信号送给小车的处理、控制系统,控制系统发出信号对小车轨迹予以纠正。

若小车回到了轨道上,即4个探测器都只检测到白纸,则小车会继续行走;

若小车由于惯性过大依旧偏离轨道,越出了第一级两个探测器的探测范围,这时第二级探测器动作,再次对小车的运动进行纠正,使之回到正确轨道上去。

可以看出,第二级方向探测器实际是第一级的后备保护,从而提高了小车循迹的可靠性。

3.2控制器模块

采用Atmel公司的AT89C51单片机作为主控制器。

它是一个低功耗,高性能的8位单片机,片内含32k空间的可反复擦写100,000次Flash只读存储器,具有4K的随机存取数据存储器(RAM),32个I/O口,2个8位可编程定时计数器,且可在线编程、调试,方便地实现程序的下载与整机的调试。

时钟电路和复位电路如图3-7(与单片机构成最小系统)

1)采用外部时钟,晶振频率为12MHZ

2)采用按键复位

图3-7时钟电路和复位电路

3.3电源模块

电源采用双路开关电源。

明伟牌D-30W双路开关电源。

输出(5V、12V)。

实物图如图3-8所示。

图3-8双路开关电源

该开关电源尺寸为129X98X38mm,交流输入转换由开关选择,具有过流短路保护功能,能自冷散热。

低价位、高可靠。

输入电压范围----85~132VAC/175~264VAC,47~63Hz开关选择;

冲击电流----冷起动电流15A/115V30A/230V;

直流电压可调范围----额定输出电压的10%;

启动、上升、保持时间----200ms,100ms,30ms;

耐压性---输入输出间;

输入与外壳1.5KVAC,输出与外壳,0.5KVAC,历时一分钟;

工作温度、湿度-----10℃~+60℃,20%~90%RH;

安全标准----符合CE标准;

EMC标准----符合CE标准;

连接方法----7位9.5mm接线端子;

质量/包装----0.41Kg,45PCS/19.5Kg/1.2CUFT

表1

型号

输出

差值

范围

效率

D-30A

5V,0.5V~4.04A

±

2%

50mV

72%

12V,0.1~1.0A

3,-7%

100mV

3.4电机及驱动模块

3.4.1电机

电机采用直流减速电机,直流减速电机转动力矩大,体积小,重量轻,装配简单,使用方便。

由于其内部由高速电动机提供原始动力,带动变速(减速)齿轮组,可以产生较大扭力。

可选用减速比为1:

74的直流电机,减速后电机的转速为100r/min。

若车轮直径为6cm,则小车的最大速度可以达到

V=2πr·

v=2*3.14*0.03*100/60=0.314m/s

能够较好的满足系统的要求。

3.4.2驱动

驱动模块采用专用芯片L298N作为电机驱动芯片,L298N是一个具有高电压大电流的全桥驱动芯片,其响应频率高,一片L298N可以分别控制两个直流电机。

以下为L298N的引脚图和输入输出关系表。

图3-9L298N外部引脚表2L298N输入输出关系

驱动电路的设计如图3-10所示:

图3-10L298N电机驱动电路

L298N的5、7、10、12四个引脚接到单片机上,通过对单片机的编程就可实现两个直流电机的PWM调速控制。

3.5自动循迹小车总体设计

3.5.1总体电路图

图3-11总体电路图

3.5.2系统总体说明

如图3-11所示,当光电传感器开始接受信号,通过比较器将信号传如单片机中。

小车进入寻迹模式,即开始不停地扫描与探测器连接的单片I/O口,一旦检测到某个I/O口有信号变化,就执行相应的判断程序,把相应的信号发送给电动机从而纠正小车的状态。

单片机采用T0定时计数器,通过来产生PWM波,控制电机转速。

4.软件设计

4.1PWM控制

本系统采用PWM来调节直流电机的速度。

PWM是通过控制固定电压的直流电源开关频率,从而改变负载两端的电压,进而达到控制要求的一种电压调整方法。

PWM可以应用在许多方面,如电机调速、温度控制、压力控制等。

在PWM驱动控制的调整系统中,按一个固定的频率来接通和断开电源,并根据需要改变一个周期内“接通”和“断开”时间的长短。

通过改变直流电机电枢上电压的“占空比”来改变平均电压的大小,从而控制电动机的转速。

因此,PWM又被称为“开关驱动装置”。

在脉冲作用下,当电机通电时,速度增加;

电机断电时,速度逐渐减少。

只要按一定规律,改变通、断电的时间,即可让电机转速得到控制。

本系统中通过控制51单片机的定时器T0的初值,从而可以实现P0.4和P0.5输出口输出不同占空比的脉冲波形。

定时计数器若干时间(比如0.1ms)中断一次,就使P0.4或P0.5产生一个高电平或低电平。

将直流电机的速度分为100个等级,因此一个周期就有个100脉冲,周期为100个脉冲的时间。

速度等级对应一个周期的高电平脉冲的个数。

占空比为高电平脉冲个数占一个周期总脉冲个数的百分数。

一个周期加在电机两端的电压为脉冲高电压乘以占空比。

占空比越大,加在电机两端的电压越大,电机转动越快。

电机的平均速度等于在一定的占空比下电机的最大速度乘以占空比。

当我们改变占空比时,就可以得到不同的电机平均速度,从而达到调速的目的。

精确地讲,平均速度与占空比并不是严格的线性关系,在一般的应用中,可以将其近似地看成线性关系。

4.2总体软件流程图

小车进入寻迹模式后,即开始不停地扫描与探测器连接的单片I/O口,一旦检测到某个I/O口有信号变化,就执行相应的判断程序,把相应的信号发送给电动机从而纠正小车的状态。

软件的主程序流程图如图4-1所示:

4.3小车循迹流程图

小车进入循迹模式后,即开始不停地扫描与探测器连接的单片机I/O口,一旦检测到某个I/O口有信号,即进入判断处理程序,先确定4个探测器中的哪一个探测到了黑线,如果左面第一级传感器或者左面第二级传感器探测到黑线,即小车左半部分压到黑线,车身向右偏出,此时应使小车向左转;

如果是右面第一级传感器或右面第二级传感器探测到了黑线,即车身右半部压住黑线,小车向左偏出了轨迹,则应使小车向右转。

在经过了方向调整后,小车再继续向前行走,并继续探测黑线重复上述动作。

循迹流程图如图4-2所示

由于第二级方向控制为第一级的后备,则两个等级间的转向力度必须相互配合。

第二级通常是在超出第一级的控制范围的情况下发生作用,它也是最后一层保护,所以它必须要保证小车回到正确轨迹上来,则通常使第二级转向力度大于第一级,即Turn_left2>

Turn_left1,Turn_right2>

Turn_right1(其中Turn_left2,Turn_left1,Turn_right2,Turn_right1为小车转向力度,其大小通过改变单片机输出的占空比的大小来改变),具体数值在实地实验中得到。

4.4中断程序流程图

这里利用的是51单片机的T0定时计数器,从而让单片机P0口的P0.4和P0.5引脚输出占空比不同的方波,然后经驱动芯片放大后控制直流电机。

定时计数器若干时间(比如0.1ms)比如中断一次,就使P0.4或P0.5产生一个高电平或低电平。

中断程序流程图如图4-3所示

4.5单片机测序

#include<

reg51.h>

#defineucharunsignedchar

#defineuintunsignedint

unsignedcharzkb1=0;

//**左边电机的占空比**//

unsignedcharzkb2=0;

//**右边电机的占空比**//

unsignedchart=0;

//**定时器中断计数器**//

sbitRSEN1=P1^0;

sbitRSEN2=P1^1;

sbitLSEN1=P1^2;

sbitLSEN2=P1^3;

sbitIN1=P0^0;

sbitIN2=P0^1;

sbitIN3=P0^2;

sbitIN4=P0^3;

sbitENA=P0^4;

sbitENB=P0^5;

//****************延时函数****************//

voiddelay(intz)

{while(z--);

}

//**********初始化定时器,中断***********//

voidinit()

{TMOD=0x01;

TH0=(65536-100)/256;

TL0=(65536-100)%256;

EA=1;

ET0=1;

TR0=1;

//***********中断函数+脉宽调制***********//

voidtimer0()interrupt1

{if(t<

zkb1)

ENA=1;

else

ENA=0;

if(t<

zkb2)

ENB=1;

ENB=0;

t++;

if(t>

=100)

{t=0;

}

//******************直行******************//

voidqianjin()

{zkb1=30;

zkb2=30;

//***************左转函数1***************//

voidturn_left1()

{zkb1=0;

zkb2=50;

//***************左转函数2***************//

voidturn_left2()

zkb2=60;

//***************右转函数1***************//

voidturn_right1()

{zkb1=50;

zkb2=0;

//***************右转函数2***************//

voidturn_right2()

{zkb1=60;

zkb2=0;

//***************循迹函数*****************//

voidxunji()

{ucharflag;

if((RSEN1==1)&

&

(RSEN2==1)&

(LSEN1==1)&

(LSEN2==1))

{flag=0;

}//*******直行*******//

elseif((RSEN1==0)&

{flag=1;

}//***左偏1,右转1***//

(RSEN2==0)&

{flag=2;

}//***左偏2,右转2***//

elseif((RSEN1==1)&

(LSEN1==0)&

{flag=3;

}//***右偏1,左转1***//

(LSEN2==0))

{flag=4;

}//***右偏2,左转2***//

switch(flag)

{case0:

qianjin();

break;

case1:

turn_right1();

case2:

turn_right2();

case3:

turn_left1();

case4:

turn_left2();

default:

//****************主程序****************//

voidmain()

{init();

zkb1=30;

zkb2=30;

while

(1)

{IN1=1;

//******给电机加电启动******//

IN2=0;

IN3=1;

IN4=0;

{xunji();

//*********寻迹**********//

5.参考资料

[1]宋健,姜军生,赵文亮.基于单片机的直流电动机PWM调速系统[J].农机化研究,2006,

(1):

102-103.

[2]边春元李文涛江杰杜平等;

C51单片机典型模块设计与应用;

机械工业出版社;

2008.4

[3]李华.MCS-51系列单片机实用接口技术[M].北京:

航空航天大学出版社,2003

[4]楼然苗.51单片机设计实例[M].北京:

航空航天大学出版社,2005.8

[5]王晶,翁显耀,梁业宗自动寻迹小车的传感器模块设计.武汉理工大学自动化学院 湖北武汉 

[6]刘迎春.传感器原理设计与应用[M].长沙:

国防科技大学出版社,1992.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 自然科学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1