整式的乘法练习题docWord格式文档下载.docx
《整式的乘法练习题docWord格式文档下载.docx》由会员分享,可在线阅读,更多相关《整式的乘法练习题docWord格式文档下载.docx(7页珍藏版)》请在冰豆网上搜索。
B.A.(x+1)(x+4)=x(m-2)(m+3)=m(-4)]·
a+5x+422-9x+18.(乘法交换律)D.C.(y+4)(y-5)=y(x-3)(x-6)=x+9y-20;
2432322所得的结果是)·
(xx)[·
(-ab])-a31.计算=-20(aab48484738.-abb;
;
B.-aD结乘法合ba;
C.A.a.b(32.下列计算中错误的是律)[]
2362n52n+555;
B.A.x.[(a+b)[(x+y)]=(x+y)=(a+b)];
=-20amnmnm+1nmn+n.[(x+y)=(x+y)[(x+y)]]=(x+y)D;
..C343672764912;
.-8x.-8xyy).的值是[]A-6x)(;
yC;
(-2x33.By10..幂的D.-6xyDCBA.乘法意义;
.乘方定义;
.同底数幂相乘法则;
34.下列计算正确的是[乘方法则.]
3n+13n+1236128m8m16m45.=-m=2a.;
)(-a=a;
B.D)a(-m)(-m)][28.下列计算正确的是=a;
C.a·
a.A(am-132n35233934359][的结果是(a-b)35.·
(b-a)(a-b).5y·
3y.D=12x4x·
3x.;
=5x3x·
.B;
=18a2a9a.A·
2xC;
=15y
2n+m2n+m32n+mmn[的运算结果是y·
(y.29)D.-(a-b)B.A](a-b);
.;
C(b-a);
.以上都不对.
B.只有
(1)与(3)正确;
C.只有一定
(1)与(4)正确;
D.只有
(2)数36.若0<y<1,那么代式y(1-y)(1+y)的值与(3)是[]正确.
n2n-1y的计算结果是[(-6xy)]·
3x42.BA.正的;
.非负;
C.负的;
D.正、负不能唯一确定.3n-122n-1333n-13n-13932.108xyy;
Dy;
B的计算结果是[]A.40m;
.-36x.y;
C..A18x.37(-2.5m-108x)·
(-4m)
999
-40mB..;
C400mD;
.-400m.
m2m[]b.如果,那么<b(m为自然数)b的值是38][
C<0;
.0<b.≠.1Db<1;
bB0A.b>;
.
].下列运算中错误的是40[
4nn+1n44n4n44n+4=ab.b;
B(ab;
)-(-3aA.b)=-81a2n+6n232=-54a;
.C(-2a)·
(3a)44.下列计算正确的是[]
n+1n+2nn+15x=15x(3xD.-2x)·
-10x.2222y;
-12x-4xy)·
3xy=18xy(6xyA.
[.下列计算中,]41232+1;
-1)=-x-2xB.(-x)(2x+xyx-yx,,
(1)b(x-y)=bx-by
(2)b(xy)=bxby(3)b,=b-b2322222y;
(-3xC.y)(-2xy+3yz-1)=6xy-9xyz-3x2n-242n-142n-13
(2).=xy(5)x,)=(6(4)216y与
(1).只有A
正确;
nmnm>0,那么[yxy<0,要使x]y·
x45.下列计算正确的是[]50.设222mnmn2332;
A.m,n都应是偶数;
)B.mB.a,·
a=an;
C.(-a都应是奇数;
)(a+b)A.=a=(-a+b;
325.C.不论m,n=(a-b)为奇数或偶数都可以;
D.不论m,(a-b)D.n(b-a)为奇数或偶
数都不行.
][
2n3n222n的值为[-4(x)].若n为正整数,且x=7,则(3x)51
A.833;
B.2891;
C.3283;
D.1225.
的幂的形式,正确的是1047.把下列各题的计算结果写成(三)计算
][
89)(4×
)(7×
52.(6×
1010300010063×
10=10;
.100A.×
B10004n+1y)·
(-2x).(-5x.1053).1554n+32n5.10=1000.1000=10100×
D100×
=10.C2][t48.-(t+1)(t-5)的计算结果正确的是22..;
4t+5.;
.A-4t-5BCt-4t+5Dt+4t-522.55.(-4a)·
(2a·
.54(-3ab)(-ac)6ab3222的值分,qp的和x-3x+q)(x.使49+px+8)(x的积中不含x2+3a-1).
][别是
p=-3B;
q=0,p=0.A.q=1,p=3.C;
q=-9,p=-3.D;
q=1,.
3·
3(b-a)-8(a-b)65.66.2[(x+2)(x+1)-3]+(x-1)(x-2)-3x(x+3)57.(x+2y)(5a+3b)..67.(-4x.56.(3m-n)(m-2n)322.(-xy)+(-3xy)y)·
3m322m4322.·
a59[(-a)b)·
(-ab.c)+[(]58.(-ab)·
(-a25m-a)].33m33m2m)].68.计算[(-a)](m·
a+[(-a)为自然数
2n-1nn+1(x+y)(x.+x).61-xy+.60x(x-x2)y.2再求其值,-7x+13)(x-2)(x-3)+2(x+6)(x-5)-3(x69.先化简,
263(2x-+2x+1)-(2x+3)(x-5)5x(x62...
其中x=.3)(x+4)
2322·
)(-2ab.64(3a)
b-2ab-4b
22yxx-225)=4
55xyxyxyzzxy)=_____.8.(--0.7)(+0.7+)=_____,()(3225,求-ab(a-b)b的值-ab70.已知ab=-6
6611242xxyy9.()(_____)=+-
16410.观察下列各式:
2xxx-1-1)((+1)=《乘法公式》练习题
(一)23xxxx-+(1-一、填空题1)(+1)=
324xxbbaaxxx-1+1)(+1)=1.(+_____)(-)=_____,公式的条件是,结论是_____.(+-1xbxaxba--1)(+1)=_____,
(2)=_____,(+)(22.(-根据前面各式的规律可得
31yyx)()=_____.+nn-1xxxx+1)=_____.+…
(1)(-++
322mxxxxyy二、选择题+4)=_____,(+3)(_____)=9-,(---3.(+4)(22nmn11.下列多项式乘法,能用平方差公式进行计算的是())(_____)=-
22xyxyxyxzabab))(-3-A.()C.(+)(---)B.(2()×
4.98102=(_____)(_____)=()-=_____.+3-)(222mnnyxxmy)5.-+3D.(--2
(2)(3-)=_____.)(
22bbabaa12.+)()(-+)=_____.下列计算正确的是()6.(2222xxxbxxabxbx-7.(_____4)=-)(_____2-,(_____16-)(_____+44-)=9A.(2+3)(2-3)=2-9B.(+4)(-4
2bxxx三、解答题)(-1D.(C.(5+-)(6)=-1+4--30
222abbxax-(--160.9718.(-25)19.+5)(-25)17.1.034×
)=1aa-6)-(13.下列多项式乘法,不能用平方差公式计算的是()+6)(xyzyxyxxyzxyabbaxy)
)3+4+2(4)-20.(2A.(--)(3)(--+)B.(3+)(--)(311122yxyxyx)-21.()(++)(yabayxb--C.(2--)()(2+)D.(0.5-
933xyxyxxxyxxx+2)(22(3-+)23.3
(2)
(1)-+1)
(2)--(0.5)+22.(2xxy)5)需乘以下列哪个式子,才能使用平方差公式进行-14.(43-222002200124.998--计算()425.2003×
2222
yxyyxx《乘法公式》练习题
(二)5A.-4-5--B.4+5)C.(42yx1.--()2.---()D.(4+5)222222y?
b)?
?
a?
bx?
)?
2xy(x?
ya(24aaaa3.--()4.)的计算结果是15.-+
(1)(1+)(1+()222222y9xy2x?
(2x3y)?
(a?
b?
2abb)12?
44aa(D.11B.1C.2-A.-1)2-
22yx5.()的是()25下列各式运算结果是16.-22y?
4?
x93)(x(2?
3y2x?
y)xyyxxxyyx6;
--B.()+5)(A.(+5--+5)(5-)C.(____)?
__________x32x?
y)(3?
y(xyyxxyy7.;
)+25)(-5-D.()(5)2_____y?
2(x5)?
__________
.;
820.下列计算不正确的是()______________)?
x?
2y(2x?
3y)(311B)(A)(22222;
9.y?
xxy()?
x(______________)(y2x?
3y)?
(4x?
6
2xx1102(C)(D)22________________?
2y)(xb?
b)(b?
a)?
a(a
211.;
2222y?
2?
y)xy?
x(__?
__________)((x?
3x?
3)(x9?
)21.化简:
.1213。
;
24?
)(________2)?
x(x?
aa(c?
)(c_?
(2x1)(2?
1)1?
__________bb?
(b?
c)(?
c)?
b(a?
)(a;
14.___))(?
3?
__________()?
(x1)(x2?
x;
.1522__)1(2x?
)(?
__________16.;
22yx?
4)______)(__x(2?
____?
y?
1.化简求值:
,其中2222.;
1742)2)x?
(?
2(?
(2x1)(x2)?
1?
x______________x?
)((1?
x1x1x)(
218.下列多项式乘法中不能用平方差公式计算的是()
A()(B)23322323)a(?
b))(ab?
aba(?
b()D)C(2222)?
xy2y21x2)(?
2(xy1y?
)x(?
)(.下列多项式乘法中可以用平方差公式计算的是(1923.解方程:
)
A()B)(22)?
()?
2)31(?
(x1?
13x1x1)?
a)(ba?
)(2?
)b(x211D)C(())x(x2?
1)y?
x(?
y)(x
33
2.化简:
如果,已知
(2)24.
(1)
(1)(2x-y+z-2c+m)(m+y-2x-2c-z);
22?
(xx?
1)?
(x?
y22ba6?
ab?
15,ab?
求的值;
求xy?
2222baba的值?
和?
2
.计算:
12222;
(2)(a+3b)(a-3ab+9b))-(a-3b)(a+3ab+9b2
(1)(a-2b+c)(a+2b-c)-(a+2b+c);
22.(3)(x+y)(y+z-x)(z+x-y)+(x-y)(x+y+z)(x+y-z)44
(2)(x+y)(x-y);
222(3)(a+b+c)(a.-ab-ac-bc)+b+c
222z.已知(x+y+z)(x-y+z)(-x+y+z)(x+y-z)=x.+y,化简31b?
c6.已知,且,则2?
)(c?
(bc)?
0a?
a4
111,满足4.已知,那么ca,,b?
8ca?
0abc?
cab的值是
((A)正数;
B)零(D)正负不能确(C)负数定
7.已知求的值式代,则数.满足若5.实数33222322236,caca?
abc6,?
14,?
9?
c?
ba?
cab,,abc的最大值是222)c?
a()ba(?
c(
)C(18)B(;
27A();
)D(;
1512.