生物必修一知识体系文字图示范文Word文档格式.docx
《生物必修一知识体系文字图示范文Word文档格式.docx》由会员分享,可在线阅读,更多相关《生物必修一知识体系文字图示范文Word文档格式.docx(14页珍藏版)》请在冰豆网上搜索。
C、H、O、N、P、S、(97%)K、Ca、Mg
元素微量:
Fe、Mo、Zn、Cu、B、Mo等(20种)
最基本:
C,占干重的48.4%,生物大分子以碳链为骨架
物质说明生物界与非生物界的统一性和差异性。
基础水:
主要组成成分;
一切生命活动离不开水
无机物无机盐:
对维持生物体的生命活动有重要作用
化合物蛋白质:
生命活动(或性状)的主要承担者/体现者
核酸:
携带遗传信息
有机物糖类:
主要的能源物质
脂质:
主要的储能物质
一、蛋白质(占鲜重7-10%,干重50%)
结构元素组成C、H、O、N,有的还有P、S、Fe、Zn、Cu、B、Mn、I等
单体氨基酸(约20种,必需8种,非必需12种)
化学结构由多个氨基酸分子脱水缩合而成,含有多个肽键的化合物,叫多肽。
(二)多肽呈链状结构,叫肽链。
一个蛋白质分子含有一条或几条肽链。
高级结构多肽链形成不同的空间结构,分二、三、四级。
结构特点由于组成蛋白质的氨基酸的种类、数目、排列次序不同,于是肽链的空间结构千差万别,因此蛋白质分子的结构是极其多样的。
功能○蛋白质的结构多样性决定了它的特异性/功能多样性。
1.构成细胞和生物体的重要物质:
如细胞膜、染色体、肌肉中的蛋白质;
2.有些蛋白质有催化作用:
如各种酶;
3.有些蛋白质有运输作用:
如血红蛋白、载体蛋白;
4.有些蛋白质有调节作用:
如胰岛素、生长激素等;
5.有些蛋白质有免疫作用:
如抗体。
备注○连接两个氨基酸分子的键(—NH—CO—)叫肽键。
○各种蛋白质在结构上所具有的共同特点(通式):
1.每种氨基酸至少都含有一个氨基和一个羧基连同一碳原子上;
2.各种氨基酸的区别在于R基的不同。
○变性(熟鸡蛋)&盐析&凝固(豆腐)
计算○由N个aa形成的一条肽链围成环状蛋白质时,产生水/肽键N个;
○N个aa形成一条肽链时,产生水/肽键N-1个;
○N个aa形成M条肽链时,产生水/肽键N-M个;
○N个aa形成M条肽链时,每个aa的平均分子量为α,那么由此形成的蛋白质
的分子量为N×
α-(N-M)×
18;
二、核酸
一切生物的遗传物质,是遗传信息的载体,是生命活动的控制者。
元素组成C、H、O、N、P等
分类脱氧核糖核酸(DNA双链)核糖核酸(RNA单链)
单体
成分磷酸H3PO4
五碳糖
脱氧核糖核糖
含氮碱基A、G、C、TA、G、C、U
功能主要的遗传物质,编码、复制遗
传信息,并决定蛋白质的合成将遗传信息从DNA传递给蛋白质。
存在主要存在于细胞核,少量在线粒
体和叶绿体中。
甲基绿主要存在于细胞质中。
吡罗红
△每一个单体都以若干个相连的碳原子构成的碳链为基本骨架,由许多单体连接成多聚体。
三、糖类和脂质
元素类别存在生理功能
糖类C、H、O单糖核糖C5H10O5主细胞质核糖核酸的组成成分;
脱氧核糖C4H10O5主细胞核脱氧核糖核酸的组成成分;
六碳糖:
葡萄糖
C6H12O6、果糖等主细胞质是生物体进行生命活动的重要能源物质(70%以上);
二糖
C12H22O11麦芽糖、蔗糖植物
乳糖动物
多糖淀粉、纤维素植物(细胞壁的组成成分),
重要的储存能量的物质;
糖原(肝、肌)动物
脂质C、H、O
有的还有N、P脂肪动、植物储存能量、维持体温恒定;
类脂/磷脂脑、豆构成生物膜的重要成分;
固醇胆固醇动物动物的重要成分;
性激素促性器官发育和第二性征;
维生素D促进钙、磷的吸收和利用;
△组成生物体的任何一种化合物都不能够单独地完成某一种生命活动,而只有按照一定的方式有机地组织起来,才能表现出细胞和生物体的生命现象。
细胞就是这些物质最基本的结构形式。
四、鉴别实验
试剂
成分
实验现象
常用材料
蛋白质
双缩脲
A:
0.1g/mLNaOH
B:
0.01g/mLCuSO4
紫色
大豆
鸡蛋
脂肪
苏丹Ⅲ
橘黄色
花生
还原糖
菲林试剂(加热)
砖红色沉淀
苹果、梨、白萝卜
淀粉
碘液
I2
蓝色
马铃薯
○具有还原性的糖:
葡萄糖、麦芽糖、果糖
五、无机物
水
存在方式
生理作用
结合水4.5%
部分水和细胞中
其他物质结合。
细胞结构的组成成分
自由水95%
绝大部分的水以
游离形式存在,可以自由流动。
1.细胞内的良好溶剂;
2.参与细胞内许多生物化学反应;
3.水是细胞生活的液态环境;
4.水的流动,把营养物质运送到细胞,并把废物运送到排泄器官或直接排出
。
;
无机盐
多数以离子状态存,如K+、
Ca2+、Mg2+、Cl--、PO2+等
1.细胞内某些复杂化合物的重要组成部分,如Fe2+是血红蛋白的主要成分;
2.持生物体的生命活动,细胞的形态和功能;
3.维持细胞的渗透压和酸碱平衡;
六、小结
化合有机组合分化
化学元素化合物原生质细胞
○原生质1.泛指细胞内的全部生命物质,但并不包括细胞内的所有物质,如细胞壁;
2.包括细胞膜、细胞质和细胞核三部分;
其主要成分为核酸、蛋白质(和脂类);
3.动物细胞可以看作一团原生质。
○细胞质:
指细胞中细胞膜以内、细胞核以外的全部原生质。
○原生质层:
成熟的植物细胞的细胞膜、液泡膜以及两层膜之间的细胞质,为一层半透膜。
(三)细胞的基本结构
细胞壁(植物特有):
纤维素+果胶,支持和保护作用
成分:
脂质(主磷脂)50%、蛋白质约40%、糖类2%-10%
细胞膜
作用:
隔开细胞和环境;
控制物质进出;
细胞间信息交流;
真核基质:
有水、无机盐、脂质、糖类、氨基酸、核苷酸和多种酶等
细胞细胞质是活细胞进行新陈代谢的主要场所。
分工:
线、内、高、核、溶、中、叶、液、
细胞器
协调配合:
分泌蛋白的合成与分泌;
生物膜系统
核膜:
双层膜,分开核内物质和细胞质
核孔:
实现核质之间频繁的物质交流和信息交流
细胞核核仁:
与某种RNA的合成以及核糖体的形成有关
染色质:
由DNA和蛋白质组成,DNA是遗传信息的载体
一、细胞器差速离心:
美国克劳德
线粒体叶绿体高尔基体内质网液泡核糖体中心体
分布动植物植物动植物动植物植物和某
些原生动物动植物动物
低等植物
形态椭球形、棒形扁平的球形或椭球形大小囊泡、扁平囊网状椭球形粒状小体
结构双层膜,有少量DNA单层膜,形成囊泡状和管状,内有腔没有膜结构
嵴(TP酶复合体)、基粒、基质基粒(类体)、基质(片层结构)、酶外连细胞膜,内连核膜液泡膜、细胞液蛋白质、RNA、和酶两个互相垂直的中心粒
功能有氧呼吸的主场所进行光合作用的场所细胞分泌,
成细胞壁提供合成、运输条件贮存物质,调节内环境蛋白质合成的场所与有丝分裂有关
备注在核仁
形成
△细胞器是指在细胞质中具有一定形态结构和执行一定生理功能的结构单位,
三、协调配合分泌蛋白放射性同位素示踪法:
罗马尼亚帕拉德
有机物、O2
叶绿体线粒体
能量、CO2
基因调控初步合成加工修饰
细胞核核糖体内质网高尔基体细胞膜胞外
氨基酸肽链一定空间结构
○生物膜系统:
细胞器膜+细胞膜+核膜等形成的结构体系
四、细胞核=核膜(双层)+核仁+染色质+核液
美西螈实验、蝾螈横缢实验、变形虫实验、伞藻嫁接与移植实验
细胞核是遗传信息储存和复制的场所,是代谢活动和遗传特性的控制中心。
○染色质和染色体是同一物质在细胞周期不同阶段相互转变的形态结构。
DNA螺旋
○+=核小体(串珠结构)染色质30nm纤维
组蛋白非组蛋白
螺旋化
0.4um超螺旋管(圆筒形)2-10um染色单体(圆柱状、杆状)
二、树立观点(基本思想)
1.有一定的结构就必然有与之相对应功能的存在;
○结构和功能相统一
2.任何功能都需要一定的结构来完成
1.各种细胞器既有形态结构和功能上的差异,又相互联系,相互依存;
○分工合作
2.细胞的生物膜系统体现细胞各结构之间的协调配合。
○生物的整体性:
整体大于各部分之和;
只有在各部分组成一个整体的时才能体现出生命现象。
1.结构:
细胞的各个部分是相互联系的。
如分布在细胞质的内质网内连核膜,外接细胞膜。
2.功能:
细胞的不同结构有不同的生理功能,但却是协调配合的。
如分泌蛋白的合成与分泌。
3.调控:
细胞核是代谢的调控中心。
其DNA通过控制蛋白质类物质的合成调控生命活动。
4.与外界的关系上:
每个细胞都要与相邻细胞、而与外界环境直接接触的细胞都要和外界环境进行物质交换和能量转换。
六、总结
细胞既是生物体结构的基本单位,也是生物体代谢和遗传的基本单位。
(四)细胞物质的运输
○科学家研究细胞膜结构的历程是从物质跨膜运输的现象开始的,分析成分是了解结构的基础,现象和功能又提供了探究结构的线索。
人们在实验观察的基础上提出假说,又通过进一步的实验来修正假说,其中方法与技术的进步起到关键的作用
磷脂和蛋白质和糖类
结构:
单位膜(三明治)→流动镶嵌模型
细胞膜特性结构特点:
具有相对的流动性
生理特性:
选择透过性(对离子和小分子物质具选择性)
保护作用
功能控制细胞内外物质交换
细胞识别、分泌、排泄、免疫等
一、物质跨膜运输的实例
1.水分
条件浓度外液>
细胞质/液外液<
细胞质/液
现象动物失水皱缩吸水膨胀甚至涨破
植物质壁分离质壁分离复原
原理外因水分的渗透作用
内因原生质层与细胞壁的伸缩性不同造成收缩幅度不同
结论细胞的吸水和失水是水分顺相对含量梯度跨膜运输的过程
○渗透现象发生的条件:
半透膜、细胞内外浓度差
○渗透作用:
水分从水势高的系统通过半透膜向水势低的系统移动的现象。
○半透膜:
指一类可以让小分子物质通过而大分子物质不能通过的一类薄膜的总称。
○质壁分离与复原实验可拓展应用于:
(指的是原生质层与细胞壁)
①证明成熟植物细胞发生渗透作用;
②证明细胞是否是活的;
③作为光学显微镜下观察细胞膜的方法;
④初步测定细胞液浓度的大小;
2.无机盐等其他物质
①不同生物吸收无机盐的种类和数量不同。
②物质跨膜运输既有顺浓度梯度的,也有逆浓度梯度的。
3.选择透过性膜
可以让水分子自由通过,一些离子和小分子也可以通过,而其他离子、小分子和大分子则不能通过的膜。
□生物膜是一种选择透过性膜,是严格的半透膜。
二、流动镶嵌模型
1.要点
①磷脂双分子层构成生物膜的基本支架,但这个支架不是静止的,它具有流动性。
②蛋白质镶嵌、贯穿、覆盖在磷脂双分子层上,大多数蛋白质也是可以流动的。
③天然糖蛋白蛋白质和糖类结合成天然糖蛋白,形成糖被具有保护、润滑和细胞识别等
2.与单位膜的异同
相同点:
组成细胞膜的主要物质是脂质和蛋白质
不同点:
①流:
蛋白质的分布有不均匀和不对称性;
强调组成膜的分子是运动的。
②单:
蛋白质均匀分布在脂双层的两侧;
认为生物膜是静止结构。
三、跨膜运输的方式
例子|方式|浓度梯度|载体|能量|作用
水、甘油、气体、乙醇、苯|自由扩散|顺×
|×
|被选择吸收的物质从高浓度的一侧通过细胞膜向浓度低的一侧转运
葡萄糖进入红细胞|协助扩散|顺|√|×
进入红细胞的钾离子|主动运输|逆|√|√|能保证活细胞按照生命活动的需要,主动地选择吸收所需要
的物质,排出新陈代谢产生的废物和对细胞要害的物质。
○大分子或颗粒:
胞吞、胞吐
四、小结
组成决定
磷脂分子+蛋白质分子结构功能(物质交换)
具有
导致保证体现
运动性流动性物质交换正常选择透过性
成分组成结构,结构决定功能。
构成细胞膜的磷脂分子和蛋白质分子大都是可以流动的,因此决定了由它们构成的细胞膜的结构具有一定的流动性。
结构的流动性保证了载体蛋白能把相应的物质从细胞膜的一侧转运到到另一侧。
由于细胞膜上不同载体的数量不同,所以,当物质进出细胞时能体现出不同的物质进出细胞膜的数量、速度及难易程度的不同,即反映出物质交换过程中的选择透过性。
可见,流动性是细胞膜结构的固有属性,无论细胞是否与外界发生物质交换关系,流动性总是存在的,而选择透过性是细胞膜生理特性的描述,这一特性,只有在流动性基础上,完成物质交换功能方能体现出来。
五)细胞的能量供应和利用
H2O外界
H2OO2矿质元素
[H]
光ATP原生质
ADP+PI热能
ATP
ADP+PI
CO2+H2OC3H6O3C2H5OH+CO2
一、酶——降低反应活化能
◎新陈/细胞代谢:
活细胞内全部有序化学反应的总称。
◎活化能:
分子从常态转变成容易发生化学反应的活跃状态所需要的能量。
1.发现
①巴斯德之前:
发酵是纯化学反应,与生命活动无关。
②巴斯德(法、微生物学家):
发酵与活细胞有关;
发酵是整个细胞。
③利比希(德、化学家):
引起发酵的是细胞中的某些物质,但这些物质只有在酵母细胞死亡并裂解后才能发挥作用。
④比希纳(德、化学家):
酵母细胞中的某些物质能够在酵母细胞破碎后继续起催化作用,就像在活酵母细胞中一样。
⑤萨姆纳(美、科学家):
从刀豆种子提纯出来的脲酶是一种蛋白质。
⑥许多酶是蛋白质。
⑦切赫与奥特曼(美、科学家):
少数RNA具有生物催化功能。
2.定义
酶是活细胞产生的具有催化作用的有机物,其中绝大多数酶是蛋白质。
①由活细胞产生(与核糖体有关)
②催化性质:
A.比无机催化剂更能减低化学反应的活化能,提高化学反应速度。
B.反应前后酶的性质和数量没有变化。
③成分:
绝大多数酶是蛋白质,少数酶是RNA。
3.特性
①高效性:
催化效率很高,使反应速度很快,是一般无机催化集的107——1013倍。
②专一性:
每一种酶只能催化一种或一类化学反应。
→多样性。
③需要合适的条件(温度和pH值)→温和性→易变性。
酶的催化作用需要适宜的温度、pH值等,过酸、过碱、高温都会破坏酶分子结构。
低温也会影响酶的活性,但不破坏酶的分子结构。
图例
解析在底物足够,其他因素固定的条件下,酶促反应的速度与酶浓度成正比。
1.在S较低时,V随S增加而加快,近乎成正比;
2.在S较低时,V随S增加而加快,但不显著;
3.当S很大且达到一定限度时,V也达到一个最大值,此时即使再增加S,反应也几乎不再改变。
1.在一定T内V随T的
升高而加快;
2.在一定条件下,每一种酶在某一T时活力最大,称最适温度;
3.当T升高到一定限度时,V反而随温度的升高而降低。
◎动物T:
35—40℃
PH:
6.5—8.0
◎酶工程
生产提取制成酶制剂应用治疗疾病;
加工和生产一些产品;
和分离纯化固定化酶化验诊断和水质检测;
其他分支。
二、ATP(三磷酸腺苷)
◎ATP是生物体细胞内普遍存在的一种高能磷酸化合物,是生物体进行各项生命活动的直接
能源,它的水解与合成存在着能量的释放与贮存。
1.结构简式
A—P~P~P
腺苷普通化学键13.8KJ/mol高能磷酸键30.54KJ/mol磷酸基团
2.ATP与ADP的转化
呼吸作用
(线粒体)吸Pi
(细胞质基质)能吸收分泌(渗透能)
(叶绿体)放肌肉收缩(机械能)
光合作用Pi能神经传导、生物电(电能)
ADP(每个活细胞)合成代谢(化学能)
体温(热能)
萤火虫(光能)
◎糖类—主要能源物质热能散失
太阳光能脂肪—主要储能物质氧化
(直接能源)蛋白质—能源物质之一分解化学能ATP
水解酶、放
◎ATPADP+Pi+能量
合成酶、吸
3.能产生ATP:
线粒体、叶绿体、细胞质基质
能产生水:
线粒体、叶绿体、核糖体、细胞核
能碱基互补配对:
三、ATP的主要来源——细胞呼吸
◎呼吸是通过呼吸运动吸进氧气,排出二氧化碳的过程。
◎细胞呼吸是指有机物在细胞内经过一系列的氧化分解,生成二氧化碳或其他产物,释放出能量并生成ATP的过程。
分为:
有氧呼吸
无氧呼吸
概念
指细胞在氧的参与下,通过多种酶的催化作用,把葡萄糖等有机物彻底氧化分解,产生二氧化碳和水,释放能量,生成大量ATP的过程。
指细胞在氧的参与下,通过多种酶的催化作用,把葡萄糖等有机物分解成不彻底的氧化产物,同时释放出少量能量的过程。
过程①C6H12O6→2丙酮酸+[H]+2ATP
②2丙酮酸+6H2O→6CO2+[H]+2ATP
③[H]+6O2→12H2O+34ATP①C6H12O6→2丙酮酸+[H]+2ATP
→2C3H6O3
②2丙酮酸→2C2H5OH+2CO2
反应式C6H12O6+6H2O+6O2→6CO2+12H2O+38ATPC6H12O6→2C3H6O3+2ATP
→2C2H5OH+2CO2+2ATP
不同点
场所:
①②线粒体基质③内膜
始终在细胞质基质
条件:
除①外,需分子氧、酶
不需分子氧、需酶
产物:
CO2、H2O
酒精和CO2或乳酸
能量:
大量合成
少量
原核生物无线粒体有氧呼吸在细胞质中进行
相同点联系:
从葡萄糖分解成丙酮酸阶段相同,以后阶段不同
实质:
分解有机物,释放能量,合成ATP
意义:
为生物体的各项生命活动提供能量;
为体内其他化合物合成提供原料
◎光合作用的实质
通过光反应把光能转变成活跃的化学能,通过暗反应把二氧化碳和水合成有机物,同时把活跃的化学能转变成稳定的化学能贮存在有机物中。
四、光和光合作用
◎光合作用是指绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存着能量的
有机物,并释放出氧气的过程。
影响因素有:
光、温度、CO2浓度、水分、矿质元素等。
1.发现
内容时间过程结论
普里斯特1771年蜡烛、小鼠、绿色植物实验植物可以更新空气
萨克斯1864年叶片遮光实验绿色植物在光合作用中产生淀粉
恩格尔曼1880年水绵光合作用实验叶绿体是光合作用的场所释放出氧。
鲁宾与卡门1939年同位素标记法光合作用释放的氧全来自水
2.场所
双层膜
叶绿体基质
基粒多个类囊体(片层)堆叠而成
胡萝卜素(橙黄色)1/3
类胡萝卜素叶黄素(黄色)2/3吸蓝紫光
色素(1/4)叶绿素A(蓝绿色)3/4
叶绿素(3/4)叶绿素B(黄绿色)1/4吸红橙和蓝紫光
3.过程
光反应
暗反应
条件
光、色素、酶
CO2、[H]、ATP、酶
时间
短促
较缓慢
场所
内囊体的薄膜
叶绿体的基质
过程
水的光解
①2H2O→4[H]+O2
②ATP的合成/光合磷酸化
ADP+Pi+光能→ATP
①CO2的固定
CO2+C5→2C3
②C3/CO2的还原
2C3+[H]→(CH2O)
实质
光能→化学能,释放O2
同化CO2,形成(CH2O)
总式CO2+H2O→(CH2O)+O2
或CO2+12H2O→(CH2O)6+6O2+6H2O
物变无机物CO2、H2O→有机物(CH2O)
能变光能→ATP中活跃的化学能→有机物中稳定的化学能
◎同位素示踪
14C光反应2C3暗反应(14CH2O)
3H2O固定[3H]还原(C3H2O)
H218O光18O2
◎人为创设条件,看物质变化:
1.光照→[H]和ATP→暗反应→(CH2O)
↓↓↓↓
切断→不能生成→不能进行→不能生成
2.CO2→C5→C3→(CH2O)