北师大七年级下册数学第四章《三角形》全章复习与巩固提高Word下载.docx
《北师大七年级下册数学第四章《三角形》全章复习与巩固提高Word下载.docx》由会员分享,可在线阅读,更多相关《北师大七年级下册数学第四章《三角形》全章复习与巩固提高Word下载.docx(22页珍藏版)》请在冰豆网上搜索。
一个三角形有三条角平分线,它们交于三角形内一点.
三角形的三条高所在的直线相交于一点的位置情况有三种:
锐角三角形交点在三角形内;
直角三角形交点在直角顶点;
钝角三角形交点在三角形外.
要点四、全等三角形的性质与判定
1.全等三角形的性质
全等三角形对应边相等,对应角相等.
2.全等三角形的判定定理
全等三角形判定1——“边边边”:
三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS”).“
全等三角形判定2——“角边角”:
两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”).
全等三角形判定3——“角角边”:
两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”)
全等三角形判定4——“边角边”:
两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS”).
(1)如何选择三角形证全等,可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等;
(2)可以从已知出发,看已知条件确定证哪两个三角形全等;
(3)由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等;
(4)如果以上方法都行不通,就添加辅助线,构造全等三角形.
要点五、用尺规作三角形
1.基本作图
利用尺规作图作一条线段等于已知线段、作一个角等于已知角,并利用全等三角形的知识作一个三角形与已知三角形全等;
要熟练掌握直尺和圆规在作图中的正确应用,对于作图要用正确语言来进行表达.
【典型例题】
类型一、三角形的内角和
与三角形有关的角练习(3)】
1.在△ABC中,∠ABC=∠C,BD是AC边上的高,∠ABD=30°
,则∠C的度数是多少?
【思路点拨】按△ABC为锐角三角形和钝角三角形两种情况,分类讨论.
【答案与解析】
解:
分两种情况讨论:
(1)当△ABC为锐角三角形时,如图所示,在△ABD中,
∵BD是AC边上的高(已知),
∴∠ADB=90°
(垂直定义).
又∵∠ABD=30°
(已知),
∴∠A=180°
-∠ADB-∠ABD=180°
-90°
-30°
=60°
又∵∠A+∠ABC+∠C=180°
(三角形内角和定理),
∴∠ABC+∠C=120°
,
又∵∠ABC=∠C,∴∠C=60°
(2)当△ABC为钝角三角形时,如图所示.在直角△ABD中,
∵∠ABD=30°
(已知),所以∠BAD=60°
∴∠BAC=120°
又∵∠BAC+∠ABC+∠C=180°
∴∠ABC+∠C=60°
∴∠C=30°
综上,∠C的度数为60°
或30°
【总结升华】在解决无图的几何题的过程中,只有正确作出图形才能解决问题.这就要求解答者必须具备根据条件作出图形的能力;
要注意考虑图形的完整性和其他各种可能性,双解和多解问题也是我们在学习过程中应该注意的一个重要环节.
举一反三
【变式】已知:
如图,在ΔABC中,∠A∶∠B∶∠C=3∶4∶5,BD、CE分别是边AC、AB上的高,BD、CE相交于H,则∠BHC的度数为.
【答案】135°
.
类型二、三角形的三边关系及分类
2.(2016春•故城县期末)已知:
a、b、c为三角形的三边长,化简:
|b+c﹣a|+|b﹣c﹣a|﹣|c﹣a﹣b|﹣|a﹣b+c|.
【思路点拨】根据三角形的三边关系得出a+b>c,a+c>b,b+c>a,再去绝对值符号,合并同类项即可.
【答案与解析】解:
∵a、b、c为三角形三边的长,
∴a+b>c,a+c>b,b+c>a,
∴原式=|(b+c)﹣a|+|b﹣(c+a)|﹣|c﹣(a+b)|﹣|(a+c)﹣b|
=b+c﹣a+a+c﹣b﹣a﹣b+c+b﹣a﹣c
=2c﹣2a.
【总结升华】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.
【变式】
(2015•朝阳)一个三角形的两边长分别是2和3,若它的第三边长为奇数,则这个三角形的周长为 .
【答案】8.
解:
设第三边长为x,
∵两边长分别是2和3,
∴3﹣2<x<3+2,
即:
1<x<5,
∵第三边长为奇数,
∴x=3,
∴这个三角形的周长为2+3+3=8.
3.如图,O是△ABC内一点,连接OB和OC.
(1)你能说明OB+OC<AB+AC的理由吗?
(2)若AB=5,AC=6,BC=7,你能写出OB+OC的取值范围吗?
(1)如图,延长BO交AC于点E,根据三角形的三边关系可以得到,
在△ABE中,AB+AE>BE;
在△EOC中,OE+EC>OC,
两不等式相加,得AB+AE+OE+EC>BE+OC.
由图可知,AE+EC=AC,BE=OB+OE.
所以AB+AC+OE>OB+OC+OE,即OB+OC<AB+AC.
(2)因为OB+OC>BC,所以OB+OC>7.
又因为OB+OC<AB+AC,所以OB+OC<11,所以7<OB+OC<11.
【总结升华】充分利用三角形三边关系的性质进行解题.
4.有一个等腰三角形,它的两个角的度数比是1:
2,这个三角形按角分类可能是什么三角形?
【思路点拨】因为该等腰三角形的两个角的度数比是1:
2,则这个三角形三个角度数的比为1:
2:
2或1:
1:
2,进而根据按比例分配知识,分别求出三角形的最大角的度数,进而根据三角形的分类进行判断即可.
(1)1+1+2=4,
180×
=90°
∴该三角形是直角三角形;
(2)又1+2+2=5,
=72°
∵最大角为72度,是锐角,
∴该三角形的三个角都是锐角,即该三角形是锐角三角形;
综上所述:
该三角形是直角三角形或锐角三角形.
【总结升华】解答此题用到的在知识点:
(1)三角形的内角和180度;
(2)按比例分配知识;
(3)三角形的分类;
【变式】一个三角形的三个角的度数比是1:
3,这个三角形中最小的一个角是度,按角分类,这个三角形是直角三角形.
【答案】30;
直角.
30
类型三、三角形的重要线段
5.如图13,△ABC中,∠A=40°
,∠B=72°
,CE平分∠ACB,CD⊥AB于D,DF⊥CE,求∠FCD的度数.
【思路点拨】由图可知∠CDF是Rt△CDF的一个内角,求∠CDF可先求出∠FCD,△CDB为直角三角形,所以可以求出∠BCD,而∠FCD=∠BCE-∠BCD.
在△ABC中,∠A=40°
,由三角形的内角和定理得:
∠BCA=180°
-72°
-40°
=68°
又CE平分∠ACB,
∴∠BCE=
∠BCA=34°
在
中,CD⊥AB于D,∠B=72°
∴∠BCD=90°
-72°
=18°
∴∠FCD=∠BCE-∠BCD=34°
-18°
=16°
即∠FCD=16°
【总结升华】这是三角形内角和定理在直角三角形中的应用,直角三角形两个锐角互余,所以在直角三角形中,已知一个锐角的大小,就可以求出另一个锐角的度数.
【变式】如图14,△ABC中,∠B=34°
,∠ACB=104°
,AD是BC边上的高,AE是∠BAC的平分线,求∠DAE的度数.
【答案】∠DAE=35°
类型四、全等三角形的性质和判定
6.(2015•通辽)如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=
∠ACD=90°
,且BC=CE,求证:
△ABC与△DEC全等.
【思路点拨】根据同角的余角相等可得到∠3=∠5,结合条件可得到∠1=∠D,再加上BC=CE,可证得结论.
∵∠BCE=∠ACD=90°
∴∠3+∠4=∠4+∠5,
∴∠3=∠5,
在△ACD中,∠ACD=90°
∴∠2+∠D=90°
∵∠BAE=∠1+∠2=90°
∴∠1=∠D,
在△ABC和△DEC中,
∴△ABC≌△DEC(AAS).
【总结升华】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.
举一反三:
如图所示,CE、CB分别是△ABC与△ADC的中线,且∠ACB=∠ABC.
求证:
CD=2CE.
【答案】
证明:
延长CE至F使EF=CE,连接BF.
∵EC为中线,
∴AE=BE.
在△AEC与△BEF中,
∴△AEC≌△BEF(SAS).
∴AC=BF,∠A=∠FBE.(全等三角形对应边、角相等)
又∵∠ACB=∠ABC,∠DBC=∠ACB+∠A,∠FBC=∠ABC+∠A.
∴AC=AB,∠DBC=∠FBC.
∴AB=BF.
又∵BC为△ADC的中线,
∴AB=BD.即BF=BD.
在△FCB与△DCB中,
∴△FCB≌△DCB(SAS).
∴CF=CD.即CD=2CE.
类型五、全等三角形判定的实际应用
7.为在池塘两侧的A,B两处架桥,要想测量A,B两点的距离,有以下两种方法:
(1)如图所示,找一处看得见A,B的点P,连接AP并延长到D,使PA=PD,连接BP并延长到C,使PC=PB.测得CD=35m,就确定了AB也是35m,说明其中的理由;
(2)如图所示,也可先过B点作AB的垂线BF,再在BF上取C,D两点,使BC=CD.接着过点D作BD的垂线DE交AC的延线长于E,则测出DE的长即为A,B的距离.你认为这种方案是否切实可行,请说出你的理由.作BD⊥AB,ED⊥BF的目的是什么?
若满足∠ABD=∠BDE≠90°
,此方案是否仍然可行?
为什么?
【思路点拨】本题两种测量方案实际上是利用三角形全等的知识构造两个全等三角形,通过测量这个三角形中与AB相等的线段的长,从而得知AB的距离.
(1)由△APB≌△DPC,所以CD=AB.
(2)由△ACB≌△ECD得DE=AB.目的是使DE∥AB,可行.
【总结升华】对于实际应用问题,首先要能将它化成数学模型,再根据数学知识去解决.
类型六、用尺规作三角形
8.已知:
线段a,b
求作:
△ABC,使AB=a,BC=b,AC=2a.(尺规作图,不写作法,保留作图痕迹)
【思路点拨】首先画线段AC=2a,再以A为圆心,a长为半径画弧,再以C为圆心,b长为半径画弧,两弧交于点B,连接AB、BC即可.
如图所示:
△ABC即为所求.
【总结升华】此题主要考查了作图,关键是掌握作一条线段等于已知线段的方法;
利用三角形全等判定定理”边边边”解决本题.
【变式】作图题(尺规作图,不写作法,但保留作图痕迹)
如图,已知,∠α、∠β.
求作∠AOB,使∠AOB=2∠α+∠β.
只要方法得当,有作图痕迹就给分,无作图痕迹不给分.
【巩固练习】
一.选择题
1.(2015•北海)三角形三条中线的交点叫做三角形的( )
A.内心B.外心C.中心D.重心
2.如图,在∠AOB的两边上截取AO=BO,CO=DO,连结AD、BC交于点P.则下列结论正确的是()
①△AOD≌△BOC;
②△APC≌△BPD;
③点P在∠AOB的平分线上
A.只有①B.只有②C.只有①②D.①②③
3.如图,三角形的角平分线、中线、高的画法错误的个数是( )
A.0B.1C.2D.3
4.已知如图,AD∥BC,AB⊥BC,CD⊥DE,CD=ED,AD=2,BC=3,则△ADE的面积为( )
A.1B.2C.5D.无法确定
5.利用尺规作图不能唯一作出三角形的是( )
A.已知三边B.已知两边及夹角
C.已知两角及夹边D.已知两边及其中一边的对角
6.如图,AB⊥BC于B,BE⊥AC于E,∠1=∠2,D为AC上一点,AD=AB,则().
A.∠1=∠EFDB.FD∥BCC.BF=DF=CDD.BE=EC
7.如图,已知AB=AC,PB=PC,且点A、P、D、E在同一条直线上.下面的结论:
①EB=EC;
②AD⊥BC;
③EA平分∠BEC;
④∠PBC=∠PCB.其中正确的有()
A.1个B.2个C.3个D.4个
8.如图所示的4×
4正方形网格中,∠1+∠2+∠3+∠4+∠5+∠6+∠7=( )
A.330°
B.315°
C.310°
D.320°
二.填空题
9.(2015•佛山)各边长度都是整数、最大边长为8的三角形共有 个.
10.如图,已知点C是∠AOB平分线上的点,点P、P′分别在OA、OB上,如果要得到OP=OP′,需要添加以下条件中的某一个即可:
①∠OCP=∠OCP′;
②∠OPC=∠OP′C;
③PC=P′C;
④PP′⊥OC.请你写出所有可能的结果的序号:
.
11.如图,已知△ABC是等边三角形,点O是BC上任意一点,OE、OF分别与两边垂直,等边三角形的高为1,则OE+OF的值为.
12.(2016•莘县一模)如图,在△ABC中,∠ABC、∠ACB的平分线BE、CD相交于点F,∠ABC=42°
,∠A=60°
,则∠BFC= .
13.一个三角形的两边长分别为3和7,且第三边长为整数,这样的三角形的周长最小值是_________.
14.如图所示,AD,AE是三角形ABC的高和角平分线,∠B=36°
,∠C=76°
,则∠DAE的度数.
15.如图,在△ABC中,AD是∠A的外角平分线,P是AD上异于A的任意一点,设PB=m,PC=n,AB=c,AC=b,则(m+n)与(b+c)的大小关系是.
16.如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依序为2、3、4、6,且相邻两木条的夹角均可调整。
若调整木条的夹角时不破坏此木框,则任两螺丝的距离之最大值为.
三.解答题
17.(2016•南充)已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.
(1)求证:
BD=CE;
(2)求证:
∠M=∠N.
18.如图所示,已知D是AB上一点,E是AC上的一点,BE、CD相交于点F,∠A=62°
,∠ACD=15°
,∠ABE=20°
(1)求∠BDC的度数;
(2)求∠BFD的度数;
(3)试说明∠BFC>∠A.
19.如图所示,△ABC中,D,E在BC上,且DE=EC,过D作DF∥BA,交AE于点F,DF=AC,求证:
AE平分∠BAC.
20.如图画一个等腰△ABC,使底边长BC=a,底边上的高为h(要求:
用尺规作图,保留作图痕迹).
1.【答案】D.
2.【答案】D;
【解析】可由SAS证①,由①和AAS证②,SSS证③.
3.【答案】D;
【解析】三角形的中线是三角形的一个顶点与对边中点连接的线段;
三角形的角平分线是指三角形内角的平分线与对边交点连接的线段;
三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.
4.【答案】A;
【解析】因为知道AD的长,所以只要求出AD边上的高,就可以求出△ADE的面积.过D作BC的垂线交BC于G,过E作AD的垂线交AD的延长线于F,构造出Rt△EDF≌Rt△CDG,求出GC的长,即为EF的长,然后利用三角形的面积公式解答即可
5.【答案】D;
【解析】A、边边边(SSS);
B、两边夹一角(SAS);
C、两角夹一边(ASA)都是成立的.只有D是错误的,故选D.
6.【答案】B;
【解析】证△ADF≌△ABF,则∠ABF=∠ADF=∠ACB,所以FD∥BC.
7.【答案】D;
8.【答案】B;
【解析】由图中可知:
①∠4=
×
90°
=45°
,②∠1和∠7的余角所在的三角形全等
∴∠1+∠7=90°
同理∠2+∠6=90°
,∠3+∠5=90°
∠4=45°
∴∠1+∠2+∠3+∠4+∠5+∠6+∠7=3×
+45°
=315°
9.【答案】20.
【解析】∵各边长度都是整数、最大边长为8,
∴三边长可以为:
1,8,8;
2,7,8;
2,8,8;
3,6,8;
3,7,8;
3,8,8;
4,5,8;
4,6,8;
4,7,8;
4,8,8;
5,5,8;
5,6,8;
5,7,8;
5,8,8;
6,6,8;
6,7,8;
6,8,8;
7,7,8;
7,8,8;
8,8,8;
故各边长度都是整数、最大边长为8的三角形共有20个.
10.【答案】①②④;
【解析】①OCP=∠OCP′,符合ASA,可得二三角形全等,从而得到OP=OP′;
符合AAS,可得二三角形全等,从而得到OP=OP′;
④PP′⊥OC,符合ASA,可得二三角形全等,从而得到OP=OP′;
中给的条件是边边角,全等三角形判定中没有这个定理.故填
11.【答案】1;
【解析】连接AO,△ABO的面积+△ACO的面积=△ABC的面积,所以OE+OF=等边三角形的高.
12.【答案】120°
;
【解析】解:
∵∠ABC=42°
,∠ABC+∠A+∠ACB=180°
∴∠ACB=180°
﹣42°
﹣60°
=78°
又∵∠ABC、∠ACB的平分线分别为BE、CD.
∴∠FBC=
,∠FCB=
又∵∠FBC+∠FCB+∠BFC=180°
∴∠BFC=180°
﹣21°
﹣39°
=120°
故答案为:
120°
13.【答案】15;
【解析】提示:
由三角形三边关系知x可以取5,6,7,8,9,所以三角形的周长最小值为15.
14.【答案】20°
∵∠B=36°
∴∠BAC=180°
﹣∠B﹣∠C=68°
∵AE是角平分线,
∴∠EAC=
∠BAC=34°
∵AD是高,∠C=76°
∴∠DAC=90°
﹣∠C=14°
∴∠DAE=∠EAC﹣∠DAC=34°
﹣14°
=20°
.
15.【答案】m+n>b+c;
【解析】在BA的延长线上取点E,使AE=AC,连接ED,EP,
∵AD是∠A的外角平分线,
∴∠CAD=∠EAD,
在△ACP和△AEP中,
∴△ACP≌△AEP(SAS),
∴PE=PC,
在△PBE中,PB+PE>AB+AE,
∵PB=m,PC=n,AB=c,AC=b,
∴m+n>b+c.
16.【答案】7;
【解析】分析:
若两个螺丝的距离最大,则此时这个木框的形状为三角形,可根据三条木棍的长来判断有几种三角形的组合,然后分别找出这些三角形的最长边即可.
已知4条木棍的四边长为2、3、4、6;
①选2+3、4、6作为三角形,则三边长为5、4、6;
6-5<4<6+5,能构成三角形,此时两个螺丝间的最长距离为6;
②选3+4、6、2作为三角形,则三边长为2、7、6;
6-2<7<6+2,能构成三角形,此时两个螺丝间的最大距离为7;
③选4+6、2、3作为三角形,则三边长为10、2、3;
2+3<10,不能构成三角形,此种情况不成立;
综上所述,任两螺丝的距离之最大值为7.
17.【解析】
(1)证明:
在△ABD和△ACE中,
∴△ABD≌△ACE(SAS),
∴BD=CE;
(2)证明:
∵∠1=∠2,
∴∠1+∠DAE=∠2+∠DAE,
即∠BAN=∠CAM,
由
(1)得:
△ABD≌△ACE,
∴∠B=∠C,
在△ACM和△ABN中,
∴△ACM≌△ABN(ASA),
∴∠M=∠N.
18.【解析】
(1)∵∠A=62°
,∠ACD=15°
,∠BDC是△ACD的外角,
∴∠BDC=∠A+∠ACD,
∴∠BDC=62°
+15°
=77°
(2)∵∠ABE+∠BDC+∠BFD=180°
∴∠BFD=180°
-20°
-77°
=83°
(3)∵∠BFC是△DBF的一个外角,
∴∠BFC>∠BDC.
∵∠BDC是△ADC的一个外角,
∴∠BDC>∠A,
∴∠BFC>∠A.
19.【解析】
延长FE到G,使EG=EF,连接CG,
在△DEF和△CEG中,
ED=EC,∠DEF=∠CEG,FE=EG,
∴△DEF≌△CEG,
∴DF=GC,∠DFE=∠G,
∵DF∥AB,∴∠DFE=∠BAE,
∵DF=AC,∴GC=AC,
∴∠G=∠CAE,
∴∠BAE=∠CAE,即AE平分∠BAC.
20.【提示】可先作底边长BC=a,进而作出BC的垂直平分线,以垂足为圆心,在垂直平分线上截取高h,进而连接顶