FeMCM41催化臭氧氧化间甲酚废水Word下载.docx

上传人:b****6 文档编号:18804710 上传时间:2023-01-01 格式:DOCX 页数:9 大小:406.62KB
下载 相关 举报
FeMCM41催化臭氧氧化间甲酚废水Word下载.docx_第1页
第1页 / 共9页
FeMCM41催化臭氧氧化间甲酚废水Word下载.docx_第2页
第2页 / 共9页
FeMCM41催化臭氧氧化间甲酚废水Word下载.docx_第3页
第3页 / 共9页
FeMCM41催化臭氧氧化间甲酚废水Word下载.docx_第4页
第4页 / 共9页
FeMCM41催化臭氧氧化间甲酚废水Word下载.docx_第5页
第5页 / 共9页
点击查看更多>>
下载资源
资源描述

FeMCM41催化臭氧氧化间甲酚废水Word下载.docx

《FeMCM41催化臭氧氧化间甲酚废水Word下载.docx》由会员分享,可在线阅读,更多相关《FeMCM41催化臭氧氧化间甲酚废水Word下载.docx(9页珍藏版)》请在冰豆网上搜索。

FeMCM41催化臭氧氧化间甲酚废水Word下载.docx

  称取7.8895gNa2SiO3·

9H2O(AR,上海市四赫维化工有限公司)溶解于30mL去离子水中,110℃下水热处理6h得到A.将2.0248gCTAB(AR,国药集团化学试剂有限公司)溶解于20mL去离子水中,40℃下加热搅拌得澄清溶解物B.而后将A逐滴加入B中得溶胶C,滴加完成后混合搅拌1h.用1mol·

L-1的H2SO4调整C的pH到10左右,混合搅拌2h.将C转移至高压反应釜中,140℃下水热晶化48h.冷却至室温后过滤、洗涤,110℃下干燥12h.将得到的样品在550℃空气气氛中焙烧6h,升温速率为2℃·

min-1,最终得到MCM-41.

  1.1.2Fe-MCM-41的制备

  在将B(此时的CTAB用15mL水溶解)加入A前,首先将一定量Fe(NO3)3·

9H2O(AR,天津市科密欧化学试剂有限公司)溶解于5mL水中再逐滴加入B,其他方法同上,得到铁的质量分数为ω(%)的Fe-MCM-41.

  1.2催化剂的表征

  X-射线衍射测试采用德国布鲁克X射线衍射仪(BrukerD8Focus型),CuKα辐射源,宽角度扫描范围2θ为10°

~90°

小角度扫描范围2θ为1°

~6°

.采用H2-TPR研究催化剂表面氧化物,在浙江泛泰仪器有限公司TPR装置上进行,取一定量样品在室温下用N2吹扫,基线走平后换H2∶N2=5∶95(体积比),50mL·

min-1吸附至饱和,10℃·

min-1升温至850℃,记录H2-TPR图谱.采用Topolpgic500A型穆斯堡尔谱仪分析反应前后催化剂中Fe物种的价态变化.催化剂比表面积和孔结构使用Quantachrome公司生产的QUADRASORBSI型仪器,在77K温度下进行N2吸附.在吸附测试之前,载体或催化剂在300℃下真空处理3h,最后通过N2吸附等温线和BET方程计算得到载体或催化剂比表面积.

  1.3催化剂的评价

  催化臭氧氧化反应在250mL的鼓泡塔中进行,反应装置见图1,实验时待臭氧发生器稳定后再开始实验,给出氧气流量和臭氧质量浓度均为反应装置进口处稳定数据,以保证每组实验平行.反应过程中每隔5min取样4mL,共取样7次,每组实验均从反应开始即开始计时,在反应器顶端采用带0.45μm滤膜的注射器快速取样而后测定每个取样点出水的间甲酚质量浓度和反应结束时的TOC质量浓度.间甲酚质量浓度采用大连依利特分析仪器有限公司HPLC-P1201型高效液相色谱进行分析,所用色谱柱为C18色谱柱(4.6mm×

250mm,5μm),流动相为甲醇∶水=80∶20(体积比),流速为1.0mL·

min-1,检测波长为272nm;

TOC质量浓度使用岛津TOC-VCPH/CPN分析仪进行分析测定.

  图1反应装置示意

  1.4催化剂稳定性分析

  催化臭氧氧化反应后Fe的溶出量采用美国PerkinElmer公司生产的Optima7300DV型电感耦合等离子体发射光谱仪(ICP)进行分析.

  2结果与讨论

  2.1催化剂表征

  2.1.1XRD

  图2为水热合成法所制MCM-41和Fe-MCM-41催化剂的XRD图谱.从中可以看出,所有催化剂均有明显的MCM-41衍射峰,在2.2°

左右有一个强衍射峰,说明该材料的结晶度很高.在3.7°

和4.3°

左右各有一个弱衍射峰,说明样品具有六方对称性[22].综上所述,该催化剂为结晶度较高的介孔材料.随着铁质量分数的增加,强峰逐渐减弱,并且次级峰也相应减弱,在铁的掺杂质量分数为8.2%时,3.7°

左右的峰基本消失,这是因为引入了铁使分子筛孔道的长程有序性和结晶度减弱的缘故[23],铁的引入,使得纯硅分子筛MCM-41的骨架产生变化,影响到孔道的六方结构.此外随着铁质量分数的增加样品衍射峰逐渐向大角度方向偏移,说明MCM-41结构晶面间距离减小.

 

  图2MCM-41和Fe-MCM-41的XRD衍射图谱

  2.1.2H2-TPR

  由图3可以看出,MCM-41介孔分子筛在50~850℃内没有出现还原峰,表明SiO2在该温度范围内不会被还原.随着铁质量分数的增加,低温区域的还原峰面积逐渐增大,且铁氧化物的还原峰逐渐向右偏移,这是由于铁与介孔分子筛MCM-41晶相相互作用逐渐增强以及铁质量分数逐渐增大造成的.两个还原峰是由于铁存在变价,发生了分步还原:

低温出现的峰为Fe2O3或Fe3O4被还原至FeO阶段,而更高温度的还原峰为FeO被还原为Fe的阶段[24].对催化剂进行铁磁性实验证明:

取定量8.2%Fe-MCM-41于样品瓶中,一侧放置磁铁,摇匀后静置12h,结果如图4,结果表明催化剂具有良好的磁性,因此可以采用磁铁进行催化剂回收.但是晶体表面Fe的存在价态需进一步用穆斯堡尔谱仪分析反应前后催化剂中铁物种的价态变化,因为γ-Fe2O3和Fe3O4都具有铁磁性.

  图3MCM-41和Fe-MCM-41的H2-TPR图谱Fig.3H2-TPRprofilesofMCM-41andFe-MCM-41

  图48.2%Fe-MCM-41的铁磁性

  2.1.3穆斯堡尔谱

  图5为4.4%Fe-MCM-41催化剂室温下的穆斯堡尔谱图,表1为Fe-MCM-41催化剂的穆斯堡尔参数,实验结果表明反应前后催化剂中铁的价态并未发生变化,均为Fe3+,结合铁磁性实验,表明Fe在介孔分子筛表面仅以γ-Fe2O3形式存在,且反应前后保持不变.

  图5室温下催化剂的穆斯堡尔谱

  表1催化剂的穆斯堡尔参数

  2.1.4BET由表2可以看出,随着铁掺杂质量分数的增加,该介孔分子筛的比表面积、孔容、平均孔径整体上呈下降趋势,Lan等[25]在Fe-MCM-41催化臭氧氧化p-CBA的研究中也发现了这种规律.表明了MCM-41材料比表面积和孔容孔径的可调控性.

  表2MCM-41和Fe-MCM-41的BET

  2.2催化剂评价

  2.2.1铁掺杂质量分数的影响

  本研究分析了铁掺杂质量分数对间甲酚转化率和TOC去除率的影响,结果见图6.由图6(a)可以看出随着反应时间延长,间甲酚转化率逐渐升高,其中对间甲酚转化率效果最好的催化剂为1.8%Fe-MCM-41,在反应25min时,500mg·

L-1的间甲酚可100%转化.

  O2流量:

80mL·

min-1;

O3质量浓度:

45mg·

L-1;

催化剂质量浓度:

0.1g·

模型废水原始pH值:

6;

初始间甲酚质量浓度:

500mg·

L-1图6铁的掺杂质量分数对间甲酚转化率和TOC去除率的影响

  由图6(b)可以看出Fe-MCM-41中铁的掺杂质量分数对TOC去除率影响较大,其中4.4%Fe-MCM-41对TOC去除率最大,达26.8%;

8.2%Fe-MCM-41对TOC去除率最小.结合BET表征结果:

4.4%Fe-MCM-41催化剂的孔容相比其他铁掺杂质量分数的催化剂大,更有利于臭氧和中间产物的传质并发生反应.2.2.2催化剂质量浓度的影响

  本研究分析了催化剂质量浓度对间甲酚转化率和TOC去除率的影响,结果见图7.由图7(a)可以看出间甲酚在Fe-MCM-41催化剂上存在先吸附后脱附的过程,30min时尽管有些催化剂没有达到吸附平衡,但吸附量均为5%左右,相比间甲酚转化率所占比例很小,催化剂最佳投加量为0.1g·

L-1,30min时即可把500mg·

L-1的间甲酚100%转化.

初始间甲酚质量浓度:

L-1图7催化剂质量浓度对间甲酚转化率和TOC去除率的影响

  由图7(b)可以看出催化剂质量浓度对TOC去除率影响较大,催化剂质量浓度过多和过少都不利于TOC的去除,因为催化剂质量浓度过多容易发生团聚从而降低了催化剂的比表面积,与臭氧有效接触面积减小,催化效果下降;

催化剂质量浓度过小催化活性位点偏少,也会降低催化效果,由反应结果可知最佳催化剂投加量为0.1g·

L-1.

  2.2.3底物质量浓度的影响

  本研究分析了底物质量浓度对间甲酚转化率和TOC去除率的影响,结果见图8.由图8(a)可以看出,间甲酚初始质量浓度和其转化率呈反相关,当间甲酚初始质量浓度为10mg·

L-1时,5min即可全部转化;

间甲酚初始质量浓度为100mg·

L-1时,15min可全部转化;

间甲酚初始质量浓度为500mg·

L-1时,30min才能全部转化.

4.4%Fe-MCM-41催化剂质量浓度:

0.1g·

L-1图8间甲酚质量浓度对间甲酚转化率和TOC去除率的影响

  由图8(b)可以看出当初始间甲酚质量浓度为10mg·

L-1时,30min时TOC去除率达53%,当初始间甲酚质量浓度大于100mg·

L-1时,TOC去除率为26%左右.

  2.3TOC去除率分析

  臭氧在反应中起的作用以4.4%Fe-MCM-41为例,由图6(b)可知载体+臭氧的TOC去除率为13.8%,催化剂+臭氧的TOC去除率为26.8%,由图7(b)可知载体对TOC的吸附为3.0%.从而计算出每部分对TOC去除的贡献率如图9.

  图9TOC去除率分析

  从图9可知,载体吸附作用在TOC去除率中贡献最小,TOC的去除主要是臭氧氧化和催化臭氧氧化的作用,且二者的贡献率近似为1∶1,说明臭氧在反应中既起到了直接氧化作用也起到了间接氧化作用.从图6的间甲酚转化率和TOC去除率结果可知,间甲酚转化率30min可达100%,但TOC的去除率整体较低,说明臭氧氧化或是催化臭氧氧化对间甲酚矿化作用较低.

  2.4催化剂稳定性

  使用电感耦合等离子体发射光谱仪(ICP)分析4.4%Fe-MCM-41在2.2.1节反应条件下Fe的溶出量为0.06mg·

L-1,催化剂投加量为0.1g·

L-1,计算得出铁的溶出率为1.36%,催化剂溶出量较少,另外反应前后催化剂中铁的价态并未发生变化,说明该催化剂具有良好的稳定性.

  2.5反应机制

  结合2.1.3节和2.3节分析结果可知Fe-MCM-41在该反应中确实起到了催化臭氧氧化作用,反应机制如下(图10):

首先γ-Fe2O3吸附间甲酚(A)生成Fe2O3A,而后Fe2O3A内部发生电子转移生成活性物质FeO·

A.FeO·

A不稳定解吸为A·

和FeOOH,FeOOH在酸性环境下催化O3产生·

OH,同时自身被氧化为初始构型,实现催化作用.整个催化过程产生的·

OH及O3本身实现对间甲酚的有效降解.具体参见污水宝商城资料或更多相关技术文档。

  图10金属氧化物催化臭氧氧化有机物可能的反应机制[10]

  3结论

  

(1)铁的掺杂质量分数对Fe-MCM-41在催化臭氧氧化中的活性具有较大影响,最佳掺杂质量分数为4.4%.

  

(2)反应前后催化剂中Fe的价态并未发生变化,均为Fe3+,催化臭氧氧化反应后催化剂中Fe的溶出率为1.36%,说明催化剂具有良好的稳定性.结合铁磁性实验,表明该催化剂的活性组分为γ-Fe2O3.

  (3)臭氧在反应中既有直接氧化作用也有间接氧化作用,且二者比近似为1∶1.

  (4)在模型废水原始pH值下,当间甲酚起始质量浓度为500mg·

L-1,催化剂质量浓度为0.1g·

L-1时,30min内间甲酚转化率为100%,TOC去除率为26.8%.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 经管营销

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1