电压双象限BuckBoost电路拓扑及分析Word格式.docx

上传人:b****5 文档编号:18751018 上传时间:2023-01-01 格式:DOCX 页数:9 大小:839.42KB
下载 相关 举报
电压双象限BuckBoost电路拓扑及分析Word格式.docx_第1页
第1页 / 共9页
电压双象限BuckBoost电路拓扑及分析Word格式.docx_第2页
第2页 / 共9页
电压双象限BuckBoost电路拓扑及分析Word格式.docx_第3页
第3页 / 共9页
电压双象限BuckBoost电路拓扑及分析Word格式.docx_第4页
第4页 / 共9页
电压双象限BuckBoost电路拓扑及分析Word格式.docx_第5页
第5页 / 共9页
点击查看更多>>
下载资源
资源描述

电压双象限BuckBoost电路拓扑及分析Word格式.docx

《电压双象限BuckBoost电路拓扑及分析Word格式.docx》由会员分享,可在线阅读,更多相关《电压双象限BuckBoost电路拓扑及分析Word格式.docx(9页珍藏版)》请在冰豆网上搜索。

电压双象限BuckBoost电路拓扑及分析Word格式.docx

单象限直流电压变换器电路的特点是输出电压平均值Uo跟随占空比D值而变,但不管D为何值,Uo的极性则始终不变,这对于直流开关稳压电源一类的应用场所是能够满足要求的。

但对于直流调速电源,负载为直流电动机时,上述性能便不能满足要求,因而发展了多象限直流电压变换电路。

双象限电路分为输出电流平均值Io极性可变的电路与输出电压平均值Uo极性可变的电路两类,通常前一种电路称为电流双象限电路,后一种电路称为电压双象限电路。

电流双象限电路是指输出电流平均值Io的幅值和极性均随控制信号us而变化,但输出电压平均值Uo的极性却始终为正,即电路可运行于第一和第二象限。

电压双象限电路是指输出电压平均值Uo的幅值和极性均随控制信号us而变化,但输出电流平均值Io却始终为正,即电路可运行于第一和第四象限。

本文将对电压双象限BuckBoost电路进行分析。

1Buck电路

1.1电路结构

主电路如图1所示。

用电感、内阻和等效电压串联电路表示有源负载,桥的直流输入端并联滤波电容。

这是一个全桥电路结构,桥的每臂用全控型器件(S1,S2)和不控型器件(D1,D2)组成。

S1及S2的控制采用PWM控制,这样可以调节D值,并且及时检测负载的运行状况,由此控制开关的关断和开通。

此电路的元器件、电源、负载均假设为理想的。

输出滤波电感足够大,可保证负载电流连续,且线性升降。

1.2工作原理

1.2.1运行于第一象限

这是指输出端电压平均值和电流平均值均为正的工作状态。

(0≤t≤DT)S1及S2均导通,等效电路如

图2(a)所示,输出电压Uo为Ud,输入电流等于输出电流,输出电流线性增长,负载从电源吸取能量。

(DT≤t≤T)S1导通,S2断开,D1正偏续流,等效电路如图2(b)所示,由于S1与D1导通,Uo的值为零。

输出电压平均值为Uo=DUd

1.2.2运行于第四象限

这是指输出端电压平均值为负而电流平均值为正的工作状态。

当电路负载为电动机且驱动位能性负载,如卷扬机的提升机构,当放下重物时,电机在重物作用下反转,电枢感应电势反向,电磁转矩成为制动转矩,为了保证安全,必须改变控制信号的极性和幅值,使电路工作于第四象限,将位能经过变换电路反馈到直流电源。

具体工作过程如下。

(DT≤t≤T)S1及S2均断开,电感端电压反向,D1,D2正偏导通,等效电路如图3(a)所示,输出电压Uo为-Ud,负载反馈能量。

(0≤t≤DT)S1断开,S2导通,负载电流由D2换到S2中。

等效电路如图3(b)所示,Uo的值为零。

输出电压平均值为Uo=-DUd

由以上分析可知此电路及其控制策略可以实现双象限Buck电路功能。

2Boost电路

2.1电路结构

主电路如图4所示。

图中S1,S2,S3为全控型器件,D1及D2为不控型器件。

负载依然为有源负载,直流输入端串联电感。

S1,S2,S3的控制采用PWM控制,此电路的元器件、电源、负载同样假设为理想的。

可以看出,本电路的设计思想也是利用全桥实现双象限运行,其好处在于简单、可靠。

2.2工作原理

2.2.1运行于第一象限

(DT≤t≤T)S1断开,S2及S3均导通,等效电路如图5(a)所示,电感电压UL=Ud-Uo。

0≤t≤DT)S1,S2,S3均导通,等效电路如图5(b)所示,电感电压UL=Ud。

输出电压平均值为Uo=Ud/(1-D)

2.2.2运行于第四象限

(DT≤t≤T)S1,S2,S3均断开,电感端电压反向,D1及D2正偏导通,等效电路如图6(a)所示,电感电压UL=Ud+Uo。

(0≤t≤DT)S1导通,S2及S3均断开,等效电路如图6(b)所示,电感电压UL=Ud。

输出电压平均值为Uo=-Ud/(1-D)

3Buck-Boost电路

3.1电路结构

主电路如图7所示。

图中S0,S1,S2,S3,S4为全控型器件。

负载依然为有源负载,直流输入端并联电感Lo。

所有开关均采用PWM控制,此电路的元器件、电源、负载同样假设为理想的。

此电路与双象限Boost电路不同之处是主开关与电感相互交换位置。

也是利用单象限BuckBoost电路的主电路衍生出来的,并利用全桥全控电路实现双象限功能。

改变占空比D可以实现升压或降压功能。

3.2工作原理

3.2.1运行于第一象限

(0≤t≤DT)S0,S1,S2均导通,S3及S4断开,等效电路如图8(a)所示,电感电压UL=Ud。

(DT≤t≤T) 

S0,S1及S3断开,S2及S4导通,等效电路如图8(b)所示,电感电压UL=-Uo。

3.2.2运行于第四象限

(DT≤t≤T)S0,S2,S4断开,S1及S3导通,电感端电压反向,等效电路如图9(a)所示,电感电压UL=Uo。

(0≤t≤DT)S0,S3,S4导通,S1及S2断开,等效电路如图9(b)所示,电感电压UL=Ud。

输出电压平均值为Uo=-DUd/(1-D)

4结束

本文在传统的单象限Buck、Boost、Buck-Boost电路的基本上衍生了双象限的Buck、Boost、Buck-Boost电路,并且分析了其具体的工作过程。

本文的分析为双象限电路及直流变换电路的研究提供了新的思路。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教学研究 > 教学反思汇报

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1