LongleyRice无线电波传输模型.docx

上传人:b****2 文档编号:1868821 上传时间:2022-10-24 格式:DOCX 页数:23 大小:1.18MB
下载 相关 举报
LongleyRice无线电波传输模型.docx_第1页
第1页 / 共23页
LongleyRice无线电波传输模型.docx_第2页
第2页 / 共23页
LongleyRice无线电波传输模型.docx_第3页
第3页 / 共23页
LongleyRice无线电波传输模型.docx_第4页
第4页 / 共23页
LongleyRice无线电波传输模型.docx_第5页
第5页 / 共23页
点击查看更多>>
下载资源
资源描述

LongleyRice无线电波传输模型.docx

《LongleyRice无线电波传输模型.docx》由会员分享,可在线阅读,更多相关《LongleyRice无线电波传输模型.docx(23页珍藏版)》请在冰豆网上搜索。

LongleyRice无线电波传输模型.docx

LongleyRice无线电波传输模型

第一章绪论

研究背景

Longley-Rice无线电波传输模型[]是由Longley和Riee提出的无线电波传输模型,该模型为统计模型,它是以无线电波传播理论为依据,并结合了许多实际环境下的测量数据,所以该模型被称为半经验预测模型。

正是因为该模型是以无线电波传播理论为依据,有加上了大量的实际测量数据,因此该模型得到了广泛的应用。

该模型被称为不规则地面模型,可以用该模型预测自由空间中由地形非规则性所造成的中值传输衰落。

模型分类及参数

Longley-rice模型有:

2种模式。

当地形路径易据很详细时,特定路径参数就很容易被确定。

这不预测方式为“点到点预测”。

如果地形数据不够训确,可以利用Longley-Rice模型估计特定参数的值这种预测方式为“区域预测”。

Longley-rice模型有4种变化模式,分别为单信号模式、单天线模式、移动模式和广播模式。

在longley-rice模型的早期程序中,所有点对点预测的计算都是基于单天线模式,这里天线的位置是不变的。

后来,由于对计算精度需求的提高,人们才引入其他模式。

在各种变化模式中,变化的主要是时间、位置和情景3个参量,或者说是一个三维变量。

目前,Longley-Rice无线电波模型已有相关的计算机仿真程序,可以用来对无线电波传输的损耗进行计算。

当无线电波传输路径已知时,计算机的仿真程序可以通过无线电波传播路径的长度、极化方向、无线电波频率、地面有效半径、收发天线高度、地面导电常数以及表面绕射率等参数确定无线电波传输损耗的大小。

Longley-Rice预测模型主要有以下参数:

①天线极化方式:

可以采用水平极化或者垂直极化。

Longley-Rice模型中假设发射天线和接受天线具有相同的极化方式;

②折射率:

空气的折射率决定了无线电波的“弯曲”程度。

在一般的模型中,空气折射率用地面有效曲率来代替,通常取。

③介电常数:

地面的相对介电常数和电导率

Longley-Rice模型传输损耗

根据无线电波的传播范围的不同,Longley-Rice模型的传输损耗可大致分为三种情况,它们分别为:

(1)视距传播损耗

(2)绕射传播损耗

(3)散射传播损耗。

当无线电波传播于视距范围内时,无线电波传播方式主要以反射传播为主。

通过对地貌地形的路径及对流层的绕射特点进行分析,预测出无线电波传输中值传输衰落,将双线地面反射模型用来模拟地平线以内的传输场强。

视距传播模型的适用范围为:

(2)绕射传播损耗

当无线电波传播于超视距范围内时,无线电波传播方式主要以绕射传播为主。

但是,当无线电波的传播环境为不规则的地形时,会有两种理论用于计算绕射损耗。

其中一种适用于预测非球形但光滑的地面上无线电波的传播,而另外一种则适用于非常不规则的地面上无线电波的传播。

采用Fresnel-Kirchoff刃形模型来预测无线电波传播的绕射损耗,其计算结果是上述两种理论结果的加权和。

适用范围:

为绕射传播距离,单位为km。

(3)散射传播损耗

当无线电波的传输距离为大大超出地平线的远距离无线电波的传输时,无线电波传播方式主要以散射传播为主,预测理论以绕射理论为主。

适用范围:

为散射传播距离,单位为km。

综上所述,Longley-Rice模型传输损耗为:

(3-15)

其中:

(3-16)

(3-17)

式中:

d为传播距离,单位为km;f为无线电波频率,单位为MHz;为光滑地面距离;表示此处的绕射损耗和散射损耗相等;、、分别表示自由空间下视距、绕射和散射时的传播损耗值;和为传播损耗系数;和分别为绕射和散射损耗系数。

为视距传播距离,为绕射传播距离,为散射传播距离。

Longley-Rice模型的适用范围

Longley-Rice模型中的实测数据大多数取自10--1000MHz的频率范围,其中20--100MHz的数据涉及5--50km的距离和1--9m的收、发信天线高度;较高频段的数据涉及5--1000km的距离,10--1500m的发射天线高度和3--9m的接收天线高度。

数据来源于世界各地,但主要是美国,多数为移动记录结果。

[]Longley-Rice模型给出了参考衰减值的计算公式及不同环境下相关修正因子的详细说明,公式中所使用的参数包括:

不规则地形参数、频率、收发信机天线高度和表面折射率等[]。

同时还引入了反映介质特性的2个参数:

介电常数和导电率。

以传播理论为依据,加上极其丰富的实测数据,

使得Longley-Rice模型使用范围得到了拓展,其适用

范围如下:

1)频率f:

20--40000MHz;

2)收、发信机天线高度:

;

3)覆盖半径:

1--2000km;[]

4)表面折射率:

250--400Ns。

表地面的相对介电常数和导电率

表气候类型和相应地表折射率

在Longley-Rice模型中,温带大陆性气候为温地区大片陆地上的典型气候,其典型特征为显着}f气温变化和四季交替。

在中纬度沿海地区,强大旷海风为大陆带来了湿润的空气,因此这里主要是温带海洋性气候[]。

英国、美国西海岸和欧洲部分地区就是这种气候的典型代表。

对于小于100km的播路径而言,温带大陆性气候和温带海洋性气候造成的差别微乎其微。

但是对于更长的路径而言[],带海洋性气候带来了更多的折射,使得在约10%时间内其场强大于温带大陆性气候。

第二章传播模型分析及建模

传播模型的分析与选择

飞行器从起飞到飞临目标上空,一般情况下可能会途经平原、丘陵、高山、河流甚至是海洋等不规则地形,对通信信道损耗的预测需要考虑不同的天然地形环境的影响。

同时还要考虑树木、建筑物和其他遮挡物等人为因素的影响。

电波传播预测模型大体可分为两类:

一类是基于电磁波传播理论[],根据具体的适用环境,确定电磁环境的边界条件,求解麦克斯韦电磁波方程式,进而确定出电磁波的传播路径和传播场强值,该类模型通常适用于计算近区场电磁传播,而对远区场而言边界条件难以确定,需要考虑的因素增多,计算相当复杂;另一类是利用数理统计方法,通过将大量数据筛选后进行统计分析,并结合部分电磁理论来确定对电磁波传播损耗影响较大的因素,再利用数据拟合等方法得到电磁波的传播预测模型,属半经验模型,对远区场的电磁波预测大都使用该类模型。

通过长期的测试、研究,人们总结归纳了多种适用于远距离的电波传播预测模型,如OkumurHata模型、Egli模型和Longley-Rice模型等。

Okumura模型以准平坦地形大城市区的中值场强或路径损耗作为参考,在工程实际中多用于市区、郊区和开阔地等地形起伏不大的地区[]。

对于起伏较大的不规则地形,如丘陵地形、水陆混合地形和

孤立山峰,其传播损耗应在准平坦地形的中值传播损耗的基础上,加上适当的修正因子进行校正。

Okumura模型以曲线图的形式给出,不便于快速的仿真,而Okumura-Hata模型是Hata在Okumura曲线图的基础上,通过曲线拟合所作的经验公式:

(2—1)

式中:

为电波频率,单位MHz;d为通信距离,单位km;、为收发天线高度,单位m;为地形修正因子,是移动天线有效高度修正因子,单位dB;为距离修正因子[]。

Egli模型是通过在VHF频段和UHF频段对不规则地形上得到的大量实测数据综合分析的基础上提出的一种经验模型,以地形起伏和障碍物高度不超过15m为准,对于地形起伏和障碍物超过15m的,运用修正因子加以修正。

该模型仅适用于视距范围内。

Longley-Rice模型被称为不规则地形模型,以电波传播理论为依据,结合丰富的实测数据,用以预测在自由空间中由地形的非规则性造成的中值传播损耗。

该模型具有两种预测模式。

当能够获取详细的地形剖而数据时[],可以采用点对点模式,如果没有地形数据,预测模型需要估算与路径相关的参数,需采用区域模式。

表不同传播预测模型的适用范围

表描述了以上三种模型的具体适用范围。

从表中可以看出:

Egli模型的适用频率范围较窄,距离范围仅为视距,Egli模型不适用于地形高度起伏太大的山区,而Okumura-Hata模型和Longley-Rice模型均可用于飞行器通信仿真系统。

对这两种预测模型在开阔地和起伏较大的丘陵地区进行仿真,如图1和图2所示。

图开阔地传输损耗对比

图中,Longley-Rice模型的预测值比Okumura-Hata模型的预测值明显偏低。

Okumura-Hata模型在两种地形下的预测值变化较小,丘陵地区仅比开阔地偏高20dB左右,而Longley-Rice模型的变化较大,丘陵地区比开阔地高30dB左右。

从仿真可以看:

Longley-Rice模型比Okumura-Hata模型对地形的变化更加敏感,特别是图中Longley-Rice模型的点对点模式能够实时地反映地形对电磁波传播的影响,比区域模式更加适用于传播地形复杂的飞行器通信信道预测。

文献和巨中均使用了Longley-Rice模型作为海而电波传播模型,但由于应用环境是海洋,地形不规则度较小,因此,使用的是区域模式;[]文献中提出使用Longley-Rice模型作为地而和导弹通信信道模型,在区域模式下仿真了频率、地形、气候类型和天线位置对电波传播衰减的影响,但未给出点对点模式下地形影响的仿真结果。

本文通过抽取传播路径地形高程值,从以飞行器高度作为接收天线高度的角度,使用点对点模式对电波传播衰减进行了仿真。

图丘陵地区传播损耗对比

Longley-Rice模型建模

Longley-Rice模型引入了电磁波频率f.、收发天线有效高度、:

及位置、极化方向、地形不规则度△h、地球表而折射率、地而电导率和相对介电常数等因素,在考虑电波本身特性的基础上,同时兼顾了传播环境的电气特性。

不同路径长度的传播损耗参考中值的计算如下:

(2—2)

式中:

d为传播距离,单位为km;f为无线电波频率,单位为MHz;为光滑地面距离;表示此处的绕射损耗和散射损耗相等;、、分别表示自由空间下视距、绕射和散射时的传播损耗值;和为传播损耗系数;和分别为绕射和散射损耗系数。

为视距传播距离,为绕射传播距离,为散射传播距离。

通过式(2—2)可以分别计算视距传播损耗、衍射传播损耗和散射传播损耗。

同时,再考虑到自由空间传播损耗,整个传播路径上的总体损耗为

(2—3)

其中:

(2—4)

式中:

d为传播距离,单位为km;f为无线电波频率,单位为MHz。

衍射传播损耗

为衍射传播距离,单位:

km.

不规则地形中的衍射传播损耗通过结合基于菲涅耳-基尔霍夫理论的双刃峰模型和适用于光滑地而的Vogler修正模型来计算。

(2—5)

(2—6)

(2—7)

为收发天线有效高度,单位:

m。

为地球有效曲率

(2-8)(2—9)

(2—10)

(2—11)

式(2—10)根据参数二确定双刃峰衰落和圆形地球衰落在衰落计算中的比重。

式(2—11)为杂波干扰衰落。

视距(LOS)传播损耗

为视距[]传播距离,单位km.在LOS内,以反射传播机制为主,采用双线地而反射模型计算。

定义

如果,那么,否则

(2—11)

(2—12)

,(2—13)

式中,根据参数确定衍射之外的损耗和双线理论损耗的比重。

向散射传播损耗

为散射传播距离,单位km。

计算过程为

(2—14)

(2—15)

(2—16)

(2—17)

式中(2—18)

仿真分析

地形剖而数据的获取

应用Longley-Rice模型的点对点模式进行计算时,需要获取收发信机之间详细的地形剖而数据。

在仿真过程中采用质量较高的航天飞机雷达地形测绘使命高程数据SRTM,分辨率为90m,SRTM数据有多种存储格式,此处使用ASCII格式存储的数据,通过读取ASCII

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > IT计算机 > 电脑基础知识

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1