《隧道衬砌的防火保护》中英文Word格式文档下载.docx
《《隧道衬砌的防火保护》中英文Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《《隧道衬砌的防火保护》中英文Word格式文档下载.docx(21页珍藏版)》请在冰豆网上搜索。
Abstract:
RecentfiredisastersinEuropeanroadtunnelshaveshownthatfiresinatunnelrepresenthighrisks.Theusersandtherescueservicesareendangeredbyheat,smokeandalsoexplosiveconcretespallingofthetunnellining.Thetunnelitselfisoftendamagedconsiderably.Thenecessarylongrefurbishmentworkshavenegativeeffectsonthetunnelserviceavailabilityandalsocausehighcostsforthetunnelowner.Thushighsafetydemandsmustbeplacedoncomplexinfrastructuralfacilitiessuchasroadtunnels.Preventivemeasuresdesignedtoavoidhazardscausedbyfireareconstantlybecomingmoreandmoreimportant.Inaddition,structuralfireprotectionisaswellapointofincreasinginterest.Intheeventoffirethetemperatureinatunnelrisesextremelyrapidlywithinashortamountoftime.Largescalefiretestshaveshownthatmaximumtemperaturesof1200°
Corevenabovecouldoccur.Theresultisanincreasedriskofexplosiveconcretespallingofthetunnellining.Dependingondepthandquantityofthesespallings,thestructurecouldbedamagedseriouslyandintheworstcasethetunnelstabilitycouldbeinfluencednegatively.
Differentpossiblestructuralmeasurestoprotecttheconcretetunnellininginordertoreduceoravoiddamagesincasesoffireareexplainedanddiscussed.Afire-proofconcreteisonerelativelynewandpromisingmeasuretoavoidexplosiveconcretespallingofthetunnelliningduringafire.Thefireresistanceofconcretecanbeimprovedbyaddingpolypropylenefibresaswellasthroughtheapplicationofselectedconcretemixturesandaggregates.WithinthescopeofaresearchprojectoftheFederalHighwayResearchInstituteofGermany(BASt),fireprotectingsystemsandespeciallyfireproofconcrete,aswellastheirfirebehaviourandapplicationpossibilitiesinroadtunnelsareexamined.
Keywords:
Tunnelfire,tunnelsafety,tunnelconstruction,concretespalling,structuralfireprotection,fire-proofconcrete
1Introduction
Besidebridgestunnelsarethemostexpensiveinvestmentpartsofhighways,namelynotonlyconcerninginitialinvestmentcostsfortheconstructionofthetunnelsbutalsowithregardtolatercostsofoperation,maintenanceandpreservation.Duetothefactthatthenumberofconstructionsofroadtunnelshasconsiderablyincreasedinrecentyears(Fig.1)theFederalMinistryofTransport,BuildingandUrbanAffairs(BMVBS)andtheFederalHighwayResearchInstituteofGermany(BASt)havelistedtheessentialdemandsforstructuraldesign,suitabilityofuse,durability,economyanddemandsforlateroperationandmaintenanceofthesetunnelsinasetoftechnicalregulations.Structuralfireprotectionplaysanimportantrolebecauseofthesubstantialdamageswhichcanarisefromfireinatunnel.
InthelasttwodecadesthenumberofroadtunnelsinGermanyhasincreaseddisproportionatelycomparedwiththeincreaseofthetotalroadnet.Thus,theamountofhighwaytunnelshasmorethandoubledfrom90in1992to213in2005.Inthesameperiodthetotallengthoftubesincreasedfrom50toalmost212km,thatcorrespondstoanaveragetubelengthof665mstatistically(Fig.1).Attheendof2005,25tunnelswereunderconstruction,45tunnelswereintheprocessofplanningorinthepreparationphasejustbeforebuildingand60tunnelswereinthepreplanningphase.
2Fireaccidentsandtheireffectsonthetunnelstructure
Firesinroadtunnelsarecharacterisedbytheaffectedpersonsbeingendangeredandinmanycasesbytheconsiderableamountofdamagecausedtofacilities.Anumberofseriousaccidentsthattookplacenationallyandinternationallyintherecentyears(Tab.1)leadtoanincreasingpublicinterestintunnelsafetyandtoeffortsbythehighwayauthoritiesinordertomaketunnelssafer.
Tab.1:
Chronologyofrecentfireevents[12]
Majorfirescanresultintunneluserscomingtoharmandvehiclesbeingseriouslydamagedquiteapartfromeffectsonthetunnelsthemselves(Fig.2).Thedamageiscausedparticularlybythespontaneousdevelopmentofgreatamountsofheatandaggressivefiregases.Followingthefire,thedamagecausedtothetunnelitselfcanbadlyaffecttheserviceavailabilitybecausethetunnelisclosedtotrafficduetothenecessaryrefurbishmentworks.Dependingonthedurationofthefireandthechronologicaltemperaturedevelopment,thestabilityofthetunnelcanbenegativelyinfluenced.Redevelopmentandtheassociateddiscontinuationofservicescanlastforweeksorevenmonths.
Themaindamagepatternstoatunnelobtainedfrominvestigationsonfireaccidents[2]canbesummarisedasfollows:
-Some5–10min.mustbeestimatedforthe“flashover”–thetimerequiredforasmoulderingfiretobecomea“fullfire”resultinginasteepriseintemperatureintheaffectedareainthecaseofheavyvehicles.
-Thedurationofthefirevariesconsiderably–between30minutesandanumberofhours.
-Theinsomecasesconsiderabledamagetothetunnelstructureresultingfrommajorfiresiscausedbythehighfireloadofheavyvehicles.
-Damagetotheconcretetunnelliningismainlycausedbyspallingsaswellasthecondensationofsmokegasonthetunnelwall,theceilingandtheoperationalinstallations.
DuringafireintheTauernTunnelonMay29,1999,atotalof34vehiclesweredestroyed(Fig.3).12personslosttheirlivesandconsiderabledamagewascausedtovehiclesandtothetunnelstructure.Concretespallingswithadepthof10to15cmweremeasuredatthetunnellining.
3Temperaturesduringatunnelfire
Inordertodeterminethetemperaturedevelopmentandthedamagepatternduringatunnelfiremoredetailedalotoffiretestswereexecutedduringthelast15years.Themostcomprehensivetestsserialwithrealisticfireloadswasundertakenwithinthescopeoftheso-called“EUREKAprogram”(EU499Firetun)between1990and1992.Ina2.3kmlong,abandonedminetunnel(Repparfjord-Tunnel)inthenorthofNorwaywitha35m2cross-sectionatotalof20firetestswithroadandrailvehicleswereexecuted.ThetestresultswerelatercompletedbyadditionalfiretestsofsinglestructureelementsinlaboratoriesalsoinGermany.
Themostessentialmeasurementresultsforhotgastemperaturesthatoccurredintheminetunnelduringafiretestwithaheavytruckisprovidedinfigures5and6.Theheavytruckwasloadedwith2tofofficefurnitureandburnedoutwithin75minutes(Fig.4).Thefireloadamountedtosome100MW.Thefastrisingofthetemperatureaftertheflashoverafterabout5to10minutesuptotemperaturesof800to1000°
Cissignificant(Fig.6).Themaximumtemperaturesforroadvehiclesofnearly1000°
Cweremeasuredatthetopofthetunnelaswellasatthesides(Fig.5).
ThetestresultsoftheEUREKA-programwerethebasisforthedefinitionofthecurrentlyvaliddimensioningvaluesforthedifferenttemperaturetimecurvesinthecaseoftunnelfires(Fig.7).Thesetemperaturetime-curvesareusedforfiretestsofalltunnelpartsforwhichthefireresistancehavetobeexamined(e.g.fixingelementsfortunnelinstallations)aswellasforstaticcalculationsofthetunnelstructureitself.ThetemperaturetimecurveforroadtunnelsinGermany,laiddowninthe“Additionaltechnicalcontracttermsandguidelinesforcivilengineeringworks(ZTV-ING)”[1],relatestoafiredurationof30minutesat1200°
C,followedbya110minutelongcoolingdownphase(Fig.7,curve[1]).AlthoughtheprogressofthiscurveisshorterwhencompareddirectlywiththeETK/ISOcurve(Fig.7,curve[5]),itissubstantiallymoreaggressivewhenrisinghigherintermsofthetemperaturereachedandmorecriticalduetotheveryfastrisingofthetemperatureupto1200°
Cwithin5minutes.ThelongerfiredurationoftheEBA-curve(Fig.7,curve[6])forrailwaytunnelscanbeexplainedbythelongerrequiredtimeforrescueservicestoreachthefirecomparedwithroadtunnels.
CurrentlynewmajorfireinvestigationswereperformedwithinthescopeofanewresearchprojectcalledUPTUN(UPgradingmethodsforfiresafetyinexistingTUNnels)[8].Thisimportantresearchprojectstartedin2003andis,similartotheformerEUREKA-project,fundedbytheEuropeanUnion,butalsosupportedbyindustrypartners.FirstpublishedresultsstartedanewdiscussioninEuropeabouttemperature-timecurvesforthedimensioningoftunnelliningsagainstfireloads.Duringafirstlargescalefiretestwithasinglesimulatedtruckloadedwithroughly10twoodenandplasticpallets,carriedoutagaininanabandonedrocktunnelinNorway(Runehamartunnel),temperaturesupto1350°
Cwithin35minutesinkeepingwiththeRWS-curve(Fig.7)andatotalfireloadof203MWweremeasured.Duetothesmallercross-sectionoftheRunehamartunnelcomparedwithanormalroadtunnelcross-section,thesetestresultscouldnotbetransferreddirectlytoGermanroadtunnels,buthavetobeconsideredforthepossibleadaptationofthevalidguidelinesfortunnelsinthefuture.
Asaconsequenceofallmajorfiretestandespeciallybecauseofthecriticalfeaturesoftunnelfires,specialfireprotectionmeasureshavetobeconsideredasessentiallyimportant.
4Damagemechanismsinthecaseoffire
Theeffectoftemperatureontheconcretetunnelliningcanleadtodamageinmanydifferentways:
-Thespallingprocessislargelyinfluencedbythespeedatwhichthetemperaturerises,themoistureoftheconcreteandthroughtheporestructure(compactness).Theformationofwatervapourleadstostressesintheconcretematrixasfrom100°
C,whichcaninsomecasesleadtolarge-scalespalling.Dependingontheresidual