初升高数学提高练习第四讲 分式的化简与求值Word格式文档下载.docx
《初升高数学提高练习第四讲 分式的化简与求值Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《初升高数学提高练习第四讲 分式的化简与求值Word格式文档下载.docx(8页珍藏版)》请在冰豆网上搜索。
=[(2a+1)-(a-3)-(3a+2)+(2a-2)]
说明本题的关键是正确地将假分式写成整式与真分式之和的形式.
例2求分式
当a=2时的值.
分析与解先化简再求值.直接通分较复杂,注意到平方差公式:
a2-b2=(a+b)(a-b),
可将分式分步通分,每一步只通分左边两项.
例3若abc=1,求
分析本题可将分式通分后,再进行化简求值,但较复杂.下面介绍几种简单的解法.
解法1因为abc=1,所以a,b,c都不为零.
解法2因为abc=1,所以a≠0,b≠0,c≠0.
例4化简分式:
分析与解三个分式一齐通分运算量大,可先将每个分式的分母分解因式,然后再化简.
说明
互消掉的一对相反数,这种化简的方法叫“拆项相消”法,它是分式化简中常用的技巧.
例5化简计算(式中a,b,c两两不相等):
似的,对于这个分式,显然分母可以分解因式为(a-b)(a-c),而分子又恰好凑成(a-b)+(a-c),因此有下面的解法.
解
说明本例也是采取“拆项相消”法,所不同的是利用
例6已知:
x+y+z=3a(a≠0,且x,y,z不全相等),求
分析本题字母多,分式复杂.若把条件写成(x-a)+(y-a)+(z-a)=0,那么题目只与x-a,y-a,z-a有关,为简化计算,可用换元法求解.
解令x-a=u,y-a=v,z-a=w,则分式变为
u2+v2+w2+2(uv+vw+wu)=0.
由于x,y,z不全相等,所以u,v,w不全为零,所以u2+v2+w2≠0,从而有
说明从本例中可以看出,换元法可以减少字母个数,使运算过程简化.
例7化简分式:
适当变形,化简分式后再计算求值.
(x-4)2=3,即x2-8x+13=0.
原式分子=(x4-8x3+13x2)+(2x3-16x2+26x)+(x2-8x+13)+10
=x2(x2-8x+13)+2x(x2-8x+13)+(x2-8x+13)+10
=10,
原式分母=(x2-8x+13)+2=2,
说明本例的解法采用的是整体代入的方法,这是代入消元法的一种特殊类型,应用得当会使问题的求解过程大大简化.
解法1利用比例的性质解决分式问题.
(1)若a+b+c≠0,由等比定理有
所以
a+b-c=c,a-b+c=b,-a+b+c=a,
于是有
(2)若a+b+c=0,则
a+b=-c,b+c=-a,c+a=-b,
说明比例有一系列重要的性质,在解决分式问题时,灵活巧妙地使用,便于问题的求解.
解法2设参数法.令
则
a+b=(k+1)c,①
a+c=(k+1)b,②
b+c=(k+1)a.③
①+②+③有
2(a+b+c)=(k+1)(a+b+c),
所以(a+b+c)(k-1)=0,
故有k=1或a+b+c=0.
当k=1时,
当a+b+c=0时,
说明引进一个参数k表示以连比形式出现的已知条件,可使已知条件便于使用.
练习四
1.化简分式:
2.计算:
3.已知:
(y-z)2+(z-x)2+(x-y)2=(x+y-2z)2+(y+z-2x)2+(z+x-2y)2,
的值.