中考数学常考易错点 41 角相交线与平行线Word格式.docx

上传人:b****6 文档编号:18264236 上传时间:2022-12-14 格式:DOCX 页数:17 大小:135.50KB
下载 相关 举报
中考数学常考易错点 41 角相交线与平行线Word格式.docx_第1页
第1页 / 共17页
中考数学常考易错点 41 角相交线与平行线Word格式.docx_第2页
第2页 / 共17页
中考数学常考易错点 41 角相交线与平行线Word格式.docx_第3页
第3页 / 共17页
中考数学常考易错点 41 角相交线与平行线Word格式.docx_第4页
第4页 / 共17页
中考数学常考易错点 41 角相交线与平行线Word格式.docx_第5页
第5页 / 共17页
点击查看更多>>
下载资源
资源描述

中考数学常考易错点 41 角相交线与平行线Word格式.docx

《中考数学常考易错点 41 角相交线与平行线Word格式.docx》由会员分享,可在线阅读,更多相关《中考数学常考易错点 41 角相交线与平行线Word格式.docx(17页珍藏版)》请在冰豆网上搜索。

中考数学常考易错点 41 角相交线与平行线Word格式.docx

D.22°

【解析】 根据两直线平行,内错角相等可得∠3=∠1,再根据直角三角形两锐角互余列式计算即可得解.

【答案】 ∵ l1∥l2,

∴ ∠3=∠1=44°

∵ l3⊥l4,

∴ ∠2=90°

-∠3=90°

-44°

=46°

故选A.

【误区纠错】 本题考查了平行线的性质,垂线的定义,要熟记性质并准确识图.例外识别∠3与∠1是同位角很重要.

2.平行线的判定.

【例4】 (2014·

湖南湘潭)如图,直线a,b被直线c所截,若满足    ,则a,b平行. 

【解析】 根据同位角相等两直线平行可得∠1=∠2时,a∥b.其他合理答案亦可.

【答案】 ∵ ∠1=∠2,

∴ a∥b(同位角相等两直线平行).

故可填∠1=∠2.

【误区纠错】 分不清三线八角,以及平行线的判定方法是解题的误区,本题属条件开放性题.

名师点拨

  1.能记住点、线、面的概念.

2.能利用角的概念判断角的大小及角的表示方法;

会进行角的换算;

能正确区分角的大小;

会进行角的和、差运算.

3.能区分补角、余角的概念,记住补角、余角的性质.

4.掌握角平分线定理和线段垂直平分线定理并能正确使用.

5.会画直线的垂线;

能区分垂线、垂线段的联系与区别.

6.掌握平行的概念,会进行平行线的判断.

7.能利用直尺画直线的平行线;

会作两平行线间的距离;

能确定并准确度量两平行线间的距离.

提分策略

1.直线平行与垂直的判定及简单应用.

计算角度问题时,要注意挖掘图形中的隐含条件(三角形内角和、互为余角或补角、平行性质、垂直)及角平分线知识的应用.

【例1】 如图,△ABC中,∠A=90°

点D在边AC上,DE∥BC.若∠1=155°

则∠B的度数为    . 

【解析】 由∠1=155°

可求得∠BCD=∠CDE=25°

最后求∠B=65°

【答案】 65°

2.平行线的性质和判定的应用.

主要理解和掌握:

(1)平行线的性质;

(2)平行线的判定.

【例2】 如图,AB∥CD,分别探讨下面四个图形中∠APC与∠PAB,∠PCD的关系,请你从所得到的关系中任选一个加以证明.

【解析】 ①∠APC=∠PAB+∠PCD;

②∠APC=360°

-(∠PAB+∠PCD);

③∠APC=∠PAB-∠PCD;

④∠APC=∠PCD-∠PAB.

如证明①∠APC=∠PAB+∠PCD.

证明:

过点P作PE∥AB,所以∠A=∠APE.

又因为AB∥CD,所以PE∥CD.

所以∠C=∠CPE.

所以∠A+∠C=∠APE+∠CPE.

所以∠APC=∠PAB+∠PCD.

同理可证明其他的结论.

专项训练

一、选择题

1.(2014·

四川峨眉山二模)如图,已知直线AB,CD相交于点O,OE平分∠CPB.若∠BOD=70°

则∠COE的度数是(  ).

A.45°

B.70°

D.110°

(第1题)

(第2题)

2.(2014·

北京平谷区模拟)如图,AB∥CD,O为CD上一点,且∠AOB=90°

.若∠B=33°

则∠AOC的度数是(  ).

A.33°

B.60°

C.67°

D.57°

3.(2014·

山东日照模拟)将一副三角板按图中的方式叠放,则∠α等于(  ).

A.75°

C.45°

(第3题)

(第4题)

4.(2013·

广东广州海珠区毕业班综合调研)如图,∠1与∠2是同位角,若∠2=65°

则∠1的大小是(  ).

A.25°

B.65°

C.115°

D.不能确定

5.(2013·

浙江温州一模)如图,在△ABC中,DE∥BC,AD=2,AB=6,DE=3,则BC的长为(  ).

A.9B.6

C.4D.3

(第5题)

(第6题)

6.(2012·

湖北荆门东宝区模拟)如图,已知直线a∥b,∠1=40°

∠2=60°

.则∠3等于(  ).

A.100°

C.40°

D.20°

二、填空题

7.(2014·

广东模拟)将三角板ABC按下图放置,使其三个顶点分别落在三条平行直线上,其中∠CAB=90°

且CF恰好平分∠ACB.若∠CBA=40°

则∠DAC的度数是    . 

(第7题)

(第8题)

8.(2014·

河南鹿邑一模)如图,∠1=∠2,∠3=40°

.则∠4=    . 

9.(2014·

湖北鄂州二模)如图AB∥CD,∠1=50°

∠2=110°

则∠3=    . 

(第9题)

(第10题)

10.(2013·

湖北孝感模拟)如图,直线AB,CD相交于点E,EF⊥AB于点E,若∠CEF=59°

则∠AED的度数为    . 

三、解答题

11.(2014·

河南安阳模拟)已知:

在△ABC中,BC=a,AC=b,以AB为边作等边三角形ABD.探究下列问题:

(1)如图

(1),当点D与点C位于直线AB的两侧时,a=b=3,且∠ACB=60°

则CD=    ;

 

(2)如图

(2),当点D与点C位于直线AB的同侧时,a=b=6,且∠ACB=90°

(3)如图(3),当∠ACB变化,且点D与点C位于直线AB的两侧时,求CD的最大值及相应的∠ACB的度数.

(第11题)

参考答案与解析

1.C [解析]

2.D [解析]∠AOC=90°

-33°

=57°

3.A [解析]∠α=45°

+(90°

-60°

)=75°

4.D [解析]两直线平行同位角相等,如果不能确定两直线是平行线则不能确定同位角之间的关系.

5.A [解析]首先利用平行线判定两三角形相似,然后利用相似三角形对应边的比等于相似比求得线段BC的长即可.

6.A [解析]∠3=∠1+∠2=100°

8.140°

 [解析]∠4=180°

-∠3=140°

9.60°

 [解析]∠3=180°

-(∠1+180°

-∠2)=60°

10.149°

 [解析]∵ EF⊥AB于点E,∠CEF=59°

∴ ∠AEC=90°

-∠CEF=90°

-59°

=31°

∴ ∠AED=180°

-∠AEC=180°

-31°

=149°

11.

(3)以点D为中心,将△DBC逆时针旋转60°

则点B落在点A,点C落在点E.连接AE,CE.

∴ CD=ED,∠CDE=60°

AE=CB=a.

∴ △CDE为等边三角形.

∴ CE=CD.

如图

(1),当点E,A,C不在一条直线上时,

有CD=CE<

AE+AC=a+b;

如图

(2),当点E,A,C在一条直线上时,

CD有最大值,CD=CD=a+b.

此时∠CED=∠BCD=∠ECD=60°

∴ ∠ACB=120°

因此当∠ACB=120°

时,

CD有最大值a+b.

2019-2020年中考数学常考易错点4.2.1三角形的有关概念

1.三角形的角平分线、中线和高的意义及画法.

【例1】 如图所示的△ABC中,线段BE是△ABC边AC上的高的是(  ).

【解析】 根据三角形高的定义,过顶点作对边的垂线,顶点与垂足之间的线段叫做这个三角形的高,对各选项分析判断后利用排除法求解.

【答案】 B

【误区纠错】 本题主要考查了三角形的高的定义,注意高是过顶点与对边垂直的线段.

2.求三角形边长时,不要忘记三角形两边之和应大于第三边等.

【例2】 有5根小木棒,长度分别为2cm,3cm,4cm,5cm,6cm,任意取其中的3根小木棒首尾相接搭三角形,可搭出不同的三角形的个数为(  ).

A.5个B.6个

C.7个D.8个

【解析】 可搭出不同的三角形为:

2cm,3cm,4cm;

2cm,4cm,5cm;

2cm,5cm,6cm;

3cm,4cm,5cm;

3cm,4cm,6cm;

3cm,5cm,6cm;

4cm,5cm,6cm,共7个.

【答案】 C

【误区纠错】 考查三角形的边时,要注意三角形形成的条件;

当题目指代不明时,一定要分情况讨论,把符合条件的保留下来,不符合的舍去.

3.能利用反例证明一个命题是错误的.

【例3】 对假命题“任何一个角的补角都不小于这个角”举反例,正确的反例是(  ).

A.∠α=60°

∠α的补角∠β=120°

∠β>

∠α

B.∠α=90°

∠α的补角∠β=90°

∠β=∠α

C.∠α=100°

∠α的补角∠β=80°

∠β<

D.两个角互为邻补角

【解析】 熟记反证法的步骤,然后进行判断即可:

A.∠α的补角∠β>

∠α,符合假命题的结论,故A错误;

B.∠α的补角∠β=∠α,符合假命题的结论,故B错误;

C.∠α的补角∠β<

∠α,与假命题结论相反,故C正确;

D.由于无法说明两角具体的大小关系,故D错误.

【误区纠错】 熟记反证法的步骤,然后进行判断即可.

4.三角形内角和定理的运用.

山东泰安)如图,把一直尺放置在一个三角形纸片上,则下列结论正确的是(  ).

A.∠1+∠6>

180°

B.∠2+∠5<

C.∠3+∠4<

D.∠3+∠7>

【解析】 A.∵ DG∥EF,

∴ ∠3+∠4=180°

∵ ∠6=∠4,∠3>

∠1,

∴ ∠6+∠1<

故本选项错误;

B.∵ DG∥EF,

∴ ∠5=∠3.

∴ ∠2+∠5=∠2+∠3=(180°

-∠1)+(180°

-∠ALH)=360°

-(∠1+∠ALH)=360°

-(180°

-∠A)=180°

+∠A>

C.∵ DG∥EF,

D.∵ DG∥EF,

∴ ∠2=∠7.

∵ ∠3+∠2=180°

∴ ∠3+∠7>

故本选项正确.

【答案】 D

【误区纠错】 本题考查了平行线的性质,三角形的内角和定理的应用,主要考查学生运用定理进行推理的能力,

【例5】 (2014·

山东威海)如图,在△ABC中,∠ABC=50°

∠ACB=60°

点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,下列结论中不正确的是(  ).

A.∠BAC=70°

B.∠DOC=90°

C.∠BDC=35°

D.∠DAC=55°

【解析】 根据三角形的内角和定理列式计算即可求出∠BAC=70°

再根据角平分线的定义求出∠ABO,然后利用三角形的内角和定理求出∠AOB再根据对顶角相等可得∠DOC=∠AOB,根据邻补角的定义和角平分线的定义求出∠DCO,再利用三角形的内角和定理列式计算即可∠BDC,判断出AD为三角形的外角平分线,然后列式计算即可求出∠DAC.

【答案】 ∵ ∠ABC=50°

∴ ∠BAC=180°

-∠ABC-∠ACB=180°

-50°

=70°

故A选项结论正确.

∵ BD平分∠ABC,

在△ABO中,∠AOB=180°

-∠BAC-∠ABO=180°

-70°

-25°

=85°

∴ ∠DOC=∠AOB=85°

故B选项结论错误.

∵ CD平分∠ACE,

∴ ∠ACD=(180°

)=60°

∴ ∠BDC=180°

-85°

=35°

故C选项结论正确.

∵ BD,CD分别是∠ABC和∠ACE的平分线,

∴ AD是△ABC的外角平分线.

∴ ∠DAC=(180°

)=55°

故D选项结论正确.

故选B.

【误区纠错】 本题考查了角平分线的性质,三角形的内角和定理,角平分线的定义,熟记定理和概念是解题的关键,容易忘记三角形三个内角和是180°

这个隐含条件而出错.

1.能利用三角形概念判断三角形的形状.

2.会作不同三角形的高、中线、角平分线.

3.能利用三角形稳定性解释生活现象.

4.能证明并会运用三角形内角和定理及其推论.

5.会作三角形的中位线并掌握中位线的性质.

6.能区分定义、命题、定理的区别与联系;

能正确说出命题的条件与结论;

掌握逆命题与原命题.

7.了解反证法,利用反例证明一个命题是错误的.

8.能用综合法证明一些简单的问题

1.三角形的重要线段的应用.

三角形的中线、角平分线、高线、中位线都是三角形中重要的线段.特别提醒:

三角形的中位线常用来证明线段的倍分问题,题目中有中点,就要想到三角形的中位线定理.

江苏盐城)如图,A,B两地间有一池塘阻隔,为测量A,B两地的距离,在地面上选一点C,连接CA,CB的中点D,E.若DE的长度为30m,则A,B两地的距离为    m. 

【解析】 根据三角形中位线求出AB=2DE,代入求出即可.

【答案】 ∵ D,E分别是AC,BC的中点,DE=30m,

∴ AB=2DE=60m.

2.三角形内角与外角的应用.

综合运用三角形的内角和定理与外角的性质、角平分线的性质,灵活地运用这些基础知识,合理地推理,可以灵活地解决内、外角的关系,得到结论.

【例2】 如图,△ABC的外角∠ACD的平分线CP与内角∠ABC的平分线BP交于点P,若∠BPC=40°

则∠CAP=    . 

【解析】 过点P作PD⊥BC,PE⊥AB,PF⊥AC,垂足分别为D,E,F.因为PB是∠ABC的平分线,所以PE=PD,同理PD=PF,所以PE=PF,所以AP是∠EAC的平分线.利用

【答案】 50°

3.三角形二边之和必须大于第三边.

广西玉林)在等腰三角形ABC中,AB=AC,其周长为20cm,则边AB的取值范围是(  ).

A.1cm<

AB<

4cm

B.5cm<

10cm

C.4cm<

8cm

D.4cm<

【解析】 设AB=AC=x,则BC=20-2x,根据三角形的三边关系即可得出结论.

【答案】 ∵ 在等腰三角形ABC中,AB=AC,其周长为20cm,

∴ 设AB=AC=xcm,则BC=(20-2x)cm,

 

解得5cm<

x<

10cm.

故选B.

陕西名校中考模拟)一个三角形三个内角的度数之比为2∶3∶7,这个三角形一定是(  ).

A.直角三角形B.等腰三角形

C.锐角三角形D.钝角三角形

湖北武汉部分学校3月月考)如图,AB=AC=AD,若∠BAD=80°

则∠BCD等于(  ).

A.80°

B.100°

C.140°

D.160°

福建三明模拟)如图,已知直线m∥n,直角三角板ABC的顶点A在直线m上,则∠α等于(  ).

A.21°

B.30°

C.58°

D.48°

辽宁葫芦岛一模)已知:

直线l1∥l2,一块含30°

角的直角三角板如图所示放置,∠1=25°

则∠2等于(  ).

A.30°

B.35°

D.45°

5.(2012·

湖北荆门东宝区模拟)已知三角形三边长分别为2,2x,13,若x为正整数,则这样的三角形个数为(  ).

A.2B.3

C.5D.13

6.(2014·

江苏南京鼓楼区一模)一个等腰三角形的两边长分别是2cm和3cm,则它的周长是    cm. 

江苏无锡港下初中模拟)如图,D是AB边上的中点,将△ABC沿过D的直线折叠,使点A落在BC上F处.若∠B=42°

则∠BDF的度数为    . 

浙江温州模拟)如图,已知D为BC上一点,∠B=∠1,∠BAC=78°

则∠2=    . 

四川乐山模拟)用大小相同的小三角形摆成如图所示的图案,按照这样的规律摆放,则第n个图案中共有小三角形的个数是    . 

 …

10.(2014·

江苏南通海安县模拟)如图,在△ABC中,E,F分别是AB,AC上两点,EF∥BC,BF平分∠ABC.若∠BFE=35°

则∠AEF的度数为    . 

11.(2013·

北京四中模拟)如图,有一块三角形的地,现要平均分给四农户种植(即四等分三角形面积),请你在图上作出分法(不写作法).

1.D [解析]2x+3x+7x=180,解得x=15,

∴ 7x°

=105°

∴ 该三角形是钝角三角形.

2.C [解析]∵ AB=AC=AD,

∴ ∠B=∠ACB,∠ACD=∠D.

3.D [解析]∠α+42=90°

4.B [解析]∵ ∠3是△ADG的外角,

∴ ∠3=∠A+∠1=30°

+25°

=55°

∵ l1∥l2,∴ ∠3=∠4=55°

∵ ∠4+∠EFC=90°

∴ ∠EFC=90°

-55°

∴ ∠2=35°

5.A [解析]5.5<

7.5.

6.7或8 [解析]等腰三角形的三边长分别是2cm,2cm,3cm或2cm,3cm,3cm.

7.96°

 [解析]∵ ∠ADE=∠B=42°

∴ ∠FDE=∠ADE=42°

∴ ∠BDF=180°

-∠ADE-∠FDE=96°

8.78°

 [解析]∠2=∠B+∠BAD=∠BAC=78°

9.3n+4 [解析]第①个图形有7=3×

1+4个三角形,第②个图形有10=3×

2+4个三角形,…则第n个图案中共有小三角形的个数是3n+4.

10.70°

 [解析]∠AEF=∠ABC=2∠FBC=2∠BFE=2×

35°

11.

(1)BC四等分:

(第11题

(1))

(2)BC,AD两等分:

(第11题

(2))

(3)各边中点连接:

(第11题(3))

本题答案不唯一,还有其他分法.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 外语学习 > 其它语言学习

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1