创意作品书 推荐.docx

上传人:b****1 文档编号:1825302 上传时间:2022-10-24 格式:DOCX 页数:26 大小:289.36KB
下载 相关 举报
创意作品书 推荐.docx_第1页
第1页 / 共26页
创意作品书 推荐.docx_第2页
第2页 / 共26页
创意作品书 推荐.docx_第3页
第3页 / 共26页
创意作品书 推荐.docx_第4页
第4页 / 共26页
创意作品书 推荐.docx_第5页
第5页 / 共26页
点击查看更多>>
下载资源
资源描述

创意作品书 推荐.docx

《创意作品书 推荐.docx》由会员分享,可在线阅读,更多相关《创意作品书 推荐.docx(26页珍藏版)》请在冰豆网上搜索。

创意作品书 推荐.docx

创意作品书推荐

原油储罐脱硫及油气回收联合装置

创意作品书

 

作者:

 

1简介

1.1硫化氢的危害

随着社会经济的发展,环境问题日益突出,其中恶臭污染己经成为影响人们生活质量的大敌,作为世界七大环境公害之一,在全球范围内已受到各国的广泛重视。

我国在1993年颁布的GB14554-93恶臭污染物排放标准中严格限制包括硫化氢在内的八种恶臭气体的排放。

本团队开发研制的脱硫油气回收装置既能解决恶臭污染问题,起到减排的作用;更加能回收大量的油气挥发气,起到节能的作用,并且取得一定的经济收益。

硫化氢的危害主要体现在以下三个方面:

第一,严重危害着人体健康,硫化氢在空气中的含量小于10ppm时,对于人体而言是相对安全的,当超过10ppm时即会对人体带来危害,例如在10000ppm环境下,数秒内即可令人暴毙;第二,对相关设备带来严重腐蚀,尤其是对运输石油或天然气的管道而言,其中的硫化氢对管道的腐蚀尤为严重,;第三,对环境带来严重的污染,由于硫化氢是酸性气体,也会增加酸雨的危害程度。

1.2背景简介

原油和轻质油品含有大量的轻烃组分,最有很强的挥发性,在开采、炼制、储运和储存等过程中,受到工艺、技术及设备的限制,不可避免地会有部分液态烃组分汽化而逸入大气。

经过计算研究,每年由于原油挥发气造成的油品蒸发损耗是非常巨大的,且蒸发损耗带来很大的危害。

其次,进入大气的伴生气多数为易燃易爆以及有毒气体,其中的硫化氢气体是一种恶臭气体,对人体毒性很大,严重地威胁人身健康,也污染环境。

因此,原油挥发气的处理和控制成为急需解决的安全、节能、环保问题。

本小组主要致力于原油储罐挥发气的脱硫油气回收装置的开发和设计,其中研制开发的硫化氢处理与丙烷回收联合系统已申请相关专利,具有自己的知识产权。

该装置既实现了硫化氢气体的脱除,减少了硫化氢的排放量,控制了恶臭污染,又回收了大量挥发气体丙烷。

根据统计,原油逸出气平均状况下,每天每台的逸出量大致为150m3,设硫化氢平均浓度为300ppm,则折合标况下每年每台装置脱除硫化氢体积为16.425m3;其中丙烷成分约占24%,即有丙烷平均日气量为36m3,假设丙烷的回收率为90%,每年每台可回收丙烷气量为11520m3,即22.36吨/年。

按照计算,每年回收丙烷带来的收益额达11.18万元/台,油田由于购置该成套设备,一次性投入额为22.55万元,每年运行所投入的费用为5.3406万元,那么油田方面的投资回收期大约为3.86年。

本设备可谓是实实在在的节能减排环保产品。

表1.1减排指标

每年每台脱硫量

每年每台回收丙烷量

每年每台收益

回收期

10年内收益

16.425m3

11520m3

11.18万元

3.86

47.214万元

图1.1为脱硫油气回收装置流程图。

装置流程为,原油挥发气先经过油气分离器进行油气的分离,分离出的挥发气通过氧化铁脱硫剂床层,硫化氢被氧化铁吸附;脱硫后的挥发气被冷凝到-42℃以下,组分中丙烷被凝结成液体,再经过油气分离器,未被吸收的气体直接排入大气,而丙烷油分通过泵输送到丙烷储罐中。

本发明脱硫容量大、选择吸附性好、能耗低、回收效率高、工艺流程简单、使用寿命长、不但实现了减少硫化氢气体的排放污染,而且回收了原油挥发气中丙烷成分。

可用于油田原油储罐挥发气的脱硫及其油气回收。

图1.1脱硫油气回收装置流程图

1.3产品优势

我们开发研制的硫化氢处理与丙烷回收联合系统与其他产品相比具有以下独特的优势:

●既脱硫又进行油气回收

●脱硫效果好

●油气回收效率高

●能耗低

●操作简单

●占地面积小,工艺流程简单,不影响储油罐区的安全性

经过市场调研及相关报道分析,国内各大油田都存在油气挥发现象,且恶臭污染比较严重。

因此,我们认为目前脱硫油气回收装置的需求空间是巨大的,而且对于硫化氢的处理也势在必行。

2设备技术介绍

2.1原油挥发气脱硫方案的确定

(1)脱硫方法的选择

工业上有效脱除硫化氢的方法很多,总的可分为湿法和干法两大类。

湿法脱硫是利用特定的溶剂与气体逆流接触而脱除其中的H2S,溶剂再通过再生后重新进行吸收,根据吸收机理的不同,又分为化学吸收法、物理吸收法、物理化学吸收法以及湿式氧化法。

但湿法脱硫流程复杂、投资大,适合于气体处理量大、H2S含量较高的场合。

湿法脱硫因其负荷高而被广泛的应用于硫化氢的脱除工艺,尽管以醇胺为代表的物理化学吸收法早已在工业中得到应用,但吸收法实质上只是对气体中的H2S进行提浓,尚需做进一步处理。

且该法本身也存在设备腐蚀、溶液降解及发泡等操作困难。

干法脱硫的脱硫剂一般为非再生性的,所以多用于低含硫量气体的精脱过程,因此它的应用受到一定的限制。

常用的方法有膜分离法、分子筛法、变压吸附法、不可再生的固定床吸附法、低温分离法。

其根据所采用的吸附剂不同又可分为许多不同的类型,大致有氧化铁法、活性炭法、氧化锌法、克劳斯法等,干法脱硫投资成本较小,但是其脱硫效率较低。

运行成本较低,多用于缺水和机组较小的场合。

目前在国内外常用的干法脱硫剂有常温干法脱硫剂和高温干法脱硫剂等。

分析国外研究情况,开发的高温脱硫剂种类很多,可供选择研究的组成配比达上千种,但在本文中储罐是属于常温范围,所以这里并不适用。

而常温干法脱硫具有能耗低、再生操作简单和脱硫剂粉化率小的优点。

在此法中,最常用的脱硫剂是氧化铁和活性炭,但是粗脱硫剂(普通氧化铁和普通活性炭等)硫容小且脱硫剂绝大多数存在粉化问题。

由于吸附法具有吸附效果好、无二次污染物、易应用于工业生产等优点,是目前人们比较关注的脱硫技术之一。

结合长庆油田储油罐区时不允许使用非防爆电气设备、不允许动火的特殊场合,并且逸出气中硫化氢含量不高,考虑到成本以及实际运行的问题,只有采用干法脱除硫化氢的原理来脱除原油逸出气中的硫化氢气体。

(2)脱硫剂的选择

上面确定了采用干法脱硫的方式来脱除硫化氢,干法脱硫常用于低含硫气体的处理,但是干法脱硫中也可分为多种脱硫剂的不同吸附过程,所以还必须选用合适的脱硫剂。

目前国内外常用的干法脱硫剂分为常温干法脱硫剂和高温干法脱硫剂。

分析国外的研究情况,开发的高温脱硫剂种类很多,可供选择和研究的组成配比达上千种,从物系上分,大体可分为铁系、锌系、铜系、钙系和复合金属氧化物等,开展高温脱硫的研究虽已有20多年,但到目前为止高温脱硫仍存在诸多问题,其中最主要的问题是:

能耗大、脱硫剂粉化和再生等问题。

而常温干法脱硫具有能耗低、再生操作简单和脱硫剂粉化率小的优点。

在此法中,最常用的脱硫剂是氧化铁和活性炭,但是粗脱硫剂(普通氧化铁和普通活性炭等)硫容小且脱硫剂绝大多数存在粉化问题。

针对原油储油罐区的实际情况,我们也进行过相关方面的研究,单一组分的活性炭对气体的净化效果非常好,但是其对所吸附的气体没有选择性,不仅仅吸附硫化氢气体,而且对气体石油伴生气有吸附作用,所以单一组分的活性炭穿透时间很短,而且对活性炭而言也比较浪费。

单一组分的氧化铁则可以对硫化氢气体选择性吸附,但是其净化效果并不算太好,吸附处理后的硫化氢浓度仍不能达到相关要求。

氧化锌脱硫剂用于中、高温脱硫时,硫容较高,但脱硫精度低;而低温脱硫时硫容较低,但脱硫精度高。

所以我们必须采用复合脱硫剂,通过对各种脱硫剂的分析比较,最终发现了采用改性活性炭作为脱硫剂时的实验效果比较好。

目前,工业生产中大量使用的脱硫剂主要分为:

单一组分脱硫剂和复合脱硫剂。

活性炭、氧化铁和氧化锌等单一组分的脱硫剂在不添加任何助剂和选择载体的情况下,均对低温条件下的硫化氢有较好的去除效果。

其中活性炭和氧化铁均是工业生产中常用的脱硫剂,活性炭价格低廉,生成物为无污染的单质硫,添加适当的改性剂可以显著增强活性炭的催化活性,提高硫容量和脱硫效果;氧化铁硫容比较大,对原油挥发气中的硫化氢能够选择性吸附,适宜常温条件下脱除硫化氢。

经过对国内脱硫剂进行市场调研,我们最终决定采用改性活性炭作为脱硫剂进行实验研究。

(3)吸附装置形式的选择

由于我们采用的是干法改性活性炭和氧化铁脱除硫化氢,并且利用的是吸附原理,可供选择的设备也主要有固定床反应器、流化床反应器、气流床反应器等,但是根据长庆油田储油罐区现场装置不允许使用非防爆电器设备的特殊要求,所以我们所要采用的设备主要也就只能是固定床反应器,方法就是将脱硫剂放置于固定床内,然后将原有逸出气通入,在流经脱硫剂床层时将硫化氢吸附脱除,处理达标后的尾气从排气口排出。

固定床的形式也可以分为多种类型,主要有立式固定床反应器、卧式固定床反应器、环状固定床反应器等,本文采用最常用的立式固定床反应器。

根据我们现场考察发现,原油储罐原油逸出气均由储罐顶部量油口逸出,且量油口下方由法兰连接,便于设计支管安装吸附设备,故我们将固定床吸附器置于原油储罐罐顶靠近于量油口的悬梯角落的地方,而并不是直接引至地面再进行处理,以防止密度比空气大的硫化氢发生富集,不便于处理且容易发生危险,所以将固定床反应器放置于通风情况较好的储罐顶部。

具体实现的方法就是通过量油口处法兰引出一个支管,靠软管连接送至旁边的固定床吸附器,气体进气口安排在固定床下方,气体在固定床中由下向上流动,经脱硫剂吸附后由塔顶排出。

针对原油储罐顶部的实际情况,因为罐顶不允许也没有地方可供固定床反应器的安装而设置地脚螺栓,所以这里的固定床反应器就不能采用地脚螺栓的固定方式,我们的初步想法主要有以下三种:

①直接采用两根较长的槽钢交叉焊接成十字状之后作为固定床的底座,主要作用是增大底座的支撑半径,再加上设计的塔体本身高度就比较小,所以理论上可以很好的防止固定床反应器在外部各种作用力的叠加作用下塔体的倾覆发生;②直接在检修等非工作时期在原油储罐旁旋梯平台上打螺纹孔,用于塔设备地脚螺栓的连接固定;③底座不做特别设计,而使用卡套等形式将塔体直接固定在旋梯旁的扶手支柱上,并保证固定效果,防止其从平台上跌落。

原油储罐的固定设计具体的选择及相应尺寸、校验在后面给予详细计算。

如此我们需要具体计算的固定床反应器主要包括以下四部分:

用于防雨防尘的塔顶、装填脱硫剂的塔体、底部支撑进气管的塔底、塔体的整体固定结构,以及各部分相关的附件等。

图2.1氧化铁固定床脱硫塔示意图

图2.1为氧化铁固定床脱硫塔示意图,采用氧化铁脱硫剂干法脱除原油挥发气中少量硫化氢气体。

固定床吸附过程的机理是假设在恒温下,含有待处理气体浓度为c0的气体迅速阶跃注入吸附塔内,并以恒速v过床层。

在流动状态下,床层内吸附剂吸附的处理气体量随时间和沿床层位里而改变,此吸附量变化的浓度曲线称为负荷曲线。

如床层内吸附剂和流动的气体之间没有传质阻力,即吸附速度无限大时,吸附负荷曲线成为直角形。

此曲线内的面积为该吸附剂的吸附负荷量,即吸附饱和量[图2.2(a)]。

在实际体系中,由于存在着传质阻力、进料气体流速、流速分布、温度、两相间相平衡和吸附机理等各种条件的限制,传质阻力不为零,传质速率因而不可能无限大。

流动相气体在床层某一点的停留时间比达到相平衡所需要的时间短,使吸附负荷曲线成为抛物线的形状[图2.2(b)]。

最初,在床层入口处送入原料气体,经过一段时间t1后,在入口端形成负荷曲线,随着不断地送入恒定浓度的气体,负荷曲线向前移动。

内于吸附等温线斜率的影响,床层内各点吸附剂的吸附量随气体的浓度而变化,此抛物线形负荷曲线中S形的一段曲线为传质前沿。

继续送气体入塔,传质前沿继续向前移动,经过时t3后,传质前沿的前端到达床层的出口端时,应该停止进气,以免要脱除的气体组分溢出床层以外。

S形传质前沿所占据的床层长度为吸附床层的长度,称为吸附的传质区。

传质区越短,表示传质阻力愈小,床层的利用率越大。

传质区前一段平坦直线(平台)所包含的区域为饱和区,流动相气体中的要脱除的气体和固定相吸附剂内的溶质处于动态的平衡状态,吸附剂不再吸附气体,使通过该饱和区的气体保持气体原始浓度c0。

但是在实际的运行与操作过程中,为了保证操作的安全性,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 自然科学 > 天文地理

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1