生物的新陈代谢.docx
《生物的新陈代谢.docx》由会员分享,可在线阅读,更多相关《生物的新陈代谢.docx(9页珍藏版)》请在冰豆网上搜索。
生物的新陈代谢
第二单元生物的新陈代谢
Ⅰ植物代谢部分:
酶与ATP、光合作用、水分代谢、矿质营养、生物固氮
2.1酶的分类
存在于低等生物中,将RNA自我催化。
对生命起源的研究有重要意义。
(蛋白质本质)
(核酸本质)
2.2酶促反应序列及其意义
酶促反应序列生物体内的酶促反应可以顺序连接起来,即第一个反应的产物是第二个反应的底物,第二个反应的产物是第三个反应的底物,以此类推,所形成的反应链叫酶促反应序列。
如
酶n
意义各种反应序列形成细胞的代谢网络,使物质代谢和能量代谢沿着特定路线有序进行,确定了代谢的方向。
2.3生物体内ATP的来源
ATP来源
反应式
光合作用的光反应
酶
酶
ADP+Pi+能量——→ATP
化能合成作用
有氧呼吸
无氧呼吸
其它高能化合物转化
(如磷酸肌酸转化)
C~P(磷酸肌酸)+ADP——→C(肌酸)+ATP
酶
2.4生物体内ATP的去向
叶绿体基粒的
类囊体薄膜上
2.5光合作用的色素
2.6光合作用中光反应和暗反应的比较
比较项目
光反应
暗反应
反应场所
叶绿体基粒
叶绿体基质
能量变化
光能——→电能
电能——→活跃化学能
活跃化学能——→稳定化学能
物质变化
H2O——→[H]+O2
NADP++H++2e——→NADPH
ATP+Pi——→ATP
CO2+NADPH+ATP———→
(CH2O)+ADP+Pi+NADP++H2O
反应物
H2O、ADP、Pi、NADP+
CO2、ATP、NADPH
反应产物
O2、ATP、NADPH
(CH2O)、ADP、Pi、NADP+、H2O
反应条件
需光
不需光
反应性质
光化学反应(快)
酶促反应(慢)
反应时间
有光时(自然状态下,无光反应产物暗反应也不能进行)
2.7C3植物和C4植物光合作用的比较
C3植物
C4植物
光反应
叶肉细胞的叶绿体基粒
叶肉细胞的叶绿体基粒
暗反应
叶肉细胞的叶绿体基质
维管束鞘细胞的叶绿体基质
CO2固定
仅有C3途径
C4途径—→C3途径
2.8C4植物与C3植物的鉴别方法
方法
原理
条件和过程
现象和指标
结论
生理学方法
在强光照、干旱、高温、低CO2时,C4植物能进行光合作用,C3植物不能。
密闭、强光照、干旱、高温
生长状况:
正常生长
或
枯萎死亡
正常生长:
C4植物
枯萎死亡:
C3植物
形态学方法
维管束鞘的结构差异
过叶脉横切,装片
①是否有两圈花细胞围成环状结构
②鞘细胞是否含叶绿体
是:
C4植物
否:
C3植物
化学方法
①合成淀粉的场所不同
②酒精溶解叶绿素
③淀粉遇面碘变蓝
叶片脱绿→加碘→过叶脉横切→制片→观察
出现蓝色:
①蓝色出现在维管束鞘细胞
②蓝色出现在叶肉细胞
出现①现象时:
C4植物
出现②现象时:
C3植物
2.9C4植物中C4途径与C3途径的关系
C5
注:
磷酸烯醇式丙酮酸英文缩写为PEP。
2.10C4植物比C3植物光合作用强的原因
C3植物
C4植物
结构原因:
维管束鞘细胞的结构
以育不良,无花环型结构,无叶绿体。
光合作用在叶肉细胞进行,淀粉积累,影响光合效率。
发育良好,花环型,叶绿体大。
暗反应在此进行。
有利于产物运输,光合效率高。
生理原因:
PEP羧化酶
磷酸核酮糖羧化酶
只有磷酸核酮糖羧化酶。
磷酸核酮糖羧化酶与CO2亲和力弱,不能利用低CO2。
两种酶均有。
PEP羧化酶与CO2亲和力大,利用低CO2能力强。
2.11光能利用率与光合作用效率的关系
去向
2.12影响光合作用的外界因素与提高光能利用率的关系
温度
2.13光合作用实验的常用方法
可同时使用
2.14植物对水分的吸收和利用
2.14.1植物对水分的吸收
渗透压
2.14.2扩散作用与渗透作用的联系与区别
特指溶剂分子(如水、酒精等)的扩散,需特定的条件
2.14.3半透膜与选择透过性膜的区别与联系
半透膜
选择透过性膜
概念
小分子、离子能透过,大分子不能透过
水自由通过,被选择的离子和其它小分子可以通过,大分子和颗粒不能通过
性质
半透性(存在微孔,取决于孔的大小)
选择透过性(生物分子组成,取决于脂质、蛋白质和ATP)
状态
活或死
活
材料
合成材料或生物材料
生物膜(磷脂和蛋白质构成的膜)
物质运
动方向
不由膜决定,取决于物质密度
水和亲脂小分子:
不由膜决定,取决于物质密度
离子和其它小分子:
膜上载体(蛋白质)决定
功能
渗透作用
渗透作用和其它更多的生命活动功能
共同点
水自由通过,大分子和颗粒都不能通过
2.14.4植物体内水分的运输
导致吐水现象
2.14.5植物体内水分的利用和散失
①根持续吸水的动力
②物质运输的载体
③降低叶片温度
2.15植物体内的化学元素
(1)
主动运输
1.16植物体内的化学元素
(2)
2.17生物固氮
固氮基因(固氮酶)
脲酶
2.18氮循环
(N2循环)
2.19三类微生物在自然界氮循环中的作用
Ⅱ动物与微生物代谢部分:
三大类营养代谢、细胞呼吸、代谢基本类型、微生物类群、
微生物的营养代谢与生长、发酵工程简介
氨基酸
2.20人和动物体内三大营养物质的代谢
助记词
2.21人体的必需氨基酸
细胞膜
②
2.22细胞的有氧呼吸
2.23细胞内的无氧呼吸
2.24有氧呼吸与无氧呼吸的比较
比较项目
有氧呼吸
无氧呼吸
反应场所
真核细胞:
细胞质基质,主要在线粒体
原核细胞:
细胞基质(含有氧呼吸酶系)
细胞质基质
反应条件
需氧
不需氧
反应产物
终产物(CO2、H2O)、能量
中间产物(酒精、乳酸、甲烷等)、能量
产能多少
多,生成大量ATP
少,生成少量ATP
共同点
氧化分解有机物,释放能量
2.25呼吸作用产生的能量的利用情况
呼吸类型
被分解的有机物
储存的能量
释放的能量
可利用的能量
能量利用率
有氧呼吸
1mol葡萄糖
2870kJ
2870kJ
1165kJ
40.59%
无氧呼吸
2870kJ
196.65kJ
61.08kJ
2.13%
注:
无氧呼吸释放的能量值为分解为乳酸时的值。
不同的无氧呼吸类型释放的能量可能稍有不同。
特殊类型
2.26新陈代谢的类型
科学发现:
人们对消化过程的研究发现了酶
人们对向光性的研究发现了生长素
人们对溶菌现象的研究发现了青霉素
微生物的类群
2.27微生物的类群
2.28微生物的营养
微生物的营养
加入高浓度食盐可分离金黄色葡萄球菌
加入青霉素可分离酵母菌和霉菌
不加N源可分离固氮微生物
加入伊红-美蓝可鉴别大肠杆菌
改变细胞膜的通透性,即时输出代谢产物,解除对酶的抑制
2.29微生物的代谢
2.30微生物的生长
微生物的生长
2.31微生物的生长曲线与生长速率的关系
说明
2.32发酵工程简介
工程菌(工程细胞)