如何在SPSS及AMOS分析调节效应实战篇Word格式文档下载.docx

上传人:b****6 文档编号:18047839 上传时间:2022-12-13 格式:DOCX 页数:21 大小:392.61KB
下载 相关 举报
如何在SPSS及AMOS分析调节效应实战篇Word格式文档下载.docx_第1页
第1页 / 共21页
如何在SPSS及AMOS分析调节效应实战篇Word格式文档下载.docx_第2页
第2页 / 共21页
如何在SPSS及AMOS分析调节效应实战篇Word格式文档下载.docx_第3页
第3页 / 共21页
如何在SPSS及AMOS分析调节效应实战篇Word格式文档下载.docx_第4页
第4页 / 共21页
如何在SPSS及AMOS分析调节效应实战篇Word格式文档下载.docx_第5页
第5页 / 共21页
点击查看更多>>
下载资源
资源描述

如何在SPSS及AMOS分析调节效应实战篇Word格式文档下载.docx

《如何在SPSS及AMOS分析调节效应实战篇Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《如何在SPSS及AMOS分析调节效应实战篇Word格式文档下载.docx(21页珍藏版)》请在冰豆网上搜索。

如何在SPSS及AMOS分析调节效应实战篇Word格式文档下载.docx

上述转换在spss中可以建立3个伪变量x1、x2、x3,变量数据中心化后标准回归方程表示为:

y=b1x1+b2x2+b3x3+cm+e3)

y=b1x1+b2x2+b3x3+cm+c1mx1+c2mx2+c3mx3+e4)

x1=1表示10万以上;

x2=1表示5万到10万;

x3=1表示2万到5万;

2万以下=0。

此时2万以下的回归方程表示为:

y=cm+e(在x1、x2、x3上的伪变量值为0);

之所以单独列出这个方程,是为了方便大家根据回归方程画交互作用图,即求出c值就可以根据方程画出2万以下变量的调节效应图。

检验方法为分析R2显著性或调节系数C’显著性。

在这4种分类自变量的调节效应分析中,采用R12和R22显著性检验时,是对4种类型自变量在调节变量作用下的调节效应的整体检验,总体显著的效果可能会掩盖某种类型自变量与调节变量的交互作用不显著的情况,此时,我们就要逐一审查各个交互项的偏相关系数。

对方程(4)而言,如果检查调节变量的偏相关系数,则有可能会出现一些调节变量偏相关系数不显著的情况,例如,c1显著、c2和c3不显著或c1和c2显著,c3不显著的情况等,此时可根据交互项的偏相关系数来发现到底是那种类型的自变量与调节变量的交互作用不显著。

3.连续自变量(x)+分类调节变量(m)

这种类型的调节效应需要采用分组回归分析,所谓分组回归分析既是根据调节变量的分类水平,建立分组回归方程进行分析,回归方程为y=a+bx+e。

当然也可以采用将调节变量转换为伪变量以后进行层

选取的gender为调节变量,分别为女=0,男=1,当然在实际研究中可能有更多的分类,大家完全可以用1、2、3、4…….等来编号。

这个窗口选取的两个命令是比较多组(comparegroups和按分组变量对数据文件排序(sortthefilebygroupingvariables)

第二步:

选择回归命令并设置自变量和因变量

这个窗口里面选取了自变量comp和因变量pictcomp,然后再点击statistics在弹出窗口中设置输出参数项如下图,勾取estimates\modelfit\Rsquaredchange:

第三步:

看输出结果,分析调节效应,见表格数据:

表格1

VariablesEntered/Removedb

gender

Model

VariablesEntered

VariablesRemoved

Method

1

COMPa

.

Enter

a.Allrequestedvariablesentered.

b.DependentVariable:

PICTCOMP

表格1显示了因变量是pictcomp,回归方法采用强行进入法(enter),共有两组回归方程,一组是女性(0),另一组是男性

(1)。

表格2

ModelSummary

R

RSquare

AdjustedRSquare

Std.ErroroftheEstimate

ChangeStatistics

RSquareChange

FChange

df1

df2

Sig.FChange

.349a

.122

.113

2.723

14.161

102

.000

.489a

.239

.228

2.647

21.709

69

a.Predictors:

(Constant),COMP

表格2是回归模型的总体情况,男性和女性的两组回归方程具有显著效应(p<

.001),表明性别这一变量具有显著的调节效应?

从表格数据可以看出,女性组的回归方程解释了因变量11.2%的方差变异,男性组的回归方程解释了因变量22.9%的方差变异,(注:

此模型的数据是虚拟的,只是方便大家理解,无实际意义,实际研究中回归方程的自变量很少会只有一个的情况)。

表格3

Coefficientsa

UnstandardizedCoefficients

StandardizedCoefficients

t

Sig.

B

Std.Error

Beta

(Constant)

7.355

.943

7.797

COMP

.342

.091

.349

3.763

5.626

1.105

5.090

.490

.105

.489

4.659

a.DependentVariable:

此表格给出了自变量的标准化回归系数Beta值,在女性组中,标准化Beta为.349;

在男性组中Beta值为.489,且都达到显著性水平p<

.001,说明自变量comp对因变量有显著的预测作用。

但并不能说明有调节作用。

需要用到fisherz检验或chowtest.

 

上述对分类调节变量操作和解释主要是基于SPSS来实现的,AMOS软件也有同样功能,下面以同样回归方程变量为例谈下如何在AMOS中实现多组回归分析(multiplegroupanalyze):

第一步:

模型设置好后,点击analyze\managegroups:

在弹出的窗口输入女,如下:

设置好第一组名称后,点击new,急速输入第二组名称:

设置好两个组后,关闭组别设置窗口,回到主界面,点击

File\datafiles,如下图:

第四步:

在弹出窗口中可以看到如下两组名称:

第五步:

然后点击女组数据,再点击filename,打开数据文件,然后点击groupingvariable,这时系统会弹出你的spss数据文件中的变量,在其中选择你的分类变量,按分组变量的值设置好女性组的数据;

男组数据重复这个过程,见下图:

设置好分组以后,点击ok,回到主界面,进行模型比较设置(温忠麟关于在AMOS中进行分组比较的策略,采用如下做法:

先将两组的结构方程回归系数限制为相等,得到一个χ2值和相应的自由度。

然后去掉这个限制,重新估计模型,又得到一个χ2值和相应的自由度。

前面的χ2减去后面的χ2得到一个新的χ2,其自由度就是两个模型的自由度之差。

如果χ2检验结果是统计显著的,则调节效应显著)。

第六步:

设置限制模型和无限制模型。

点击analyze\managemodels,首先设置无限制模型(无任何限制,不需要改动);

然后点击下面的new,设置结构方程回归系数限制相等模型,如下图:

上图限制模型中,W表示所有回归系数,可在Plugin\nameparameter中进行设置。

第七步:

两个模型设置好后,进行分析设置,点击view\ananlysis

Properties,在output中选中前面三项和临界比率检验一项,回到主界面,点击左侧绘图工具栏中的运算图标

,即可得到输出结果,操作如下:

第八步:

看分组比较运算结果,一个看模型图的标准化输出,一个看文本输出结果,本例输出结果如下图:

图1:

女性组无限制模型标准化路径图

图2男性组无限制模型标准化路径图

图3女性组限制模型标准化路径图

图4男性组限制模型标准化路径图

从上述分组比较的标准化路径图来看,限制模型和无限制模型在一些拟合指标上并无显著变化,且两者的卡方与自由度之比都小于2,这提示我们可能性别的调节效应并不显著,为了进一步检验,我们结合文本输出结果来判断是否无限制模型和限制模型的区别不显著,具体分析见如下表格与结果分析:

Assumingmodel无限制模型(所有参数自由估计)tobecorrect:

DF

CMIN

P

NFI

Delta-1

IFI

Delta-2

RFI

rho-1

TLI

rho2

限制模型(所有回归权重限制相等)

8

8.545

.382

.018

.021

-.001

上表是分组回归分析无限制模型和限制模型的比较,从表中可知,对模型所有结构方程系数限制为相等后,卡方值改变量CMIN/df=8.545/8的临界比率P>

.05,卡方值改变量不显著,因此可以从卡方值判断,性别对于两个潜变量的调节效应不显著。

CMINandCMIN/DF:

NPAR

CMIN/DF

38

76.725

70

.272

1.096

无限制模型(所有参数自由估计)

46

68.180

62

.275

1.100

Saturatedmodel

108

Independencemodel

36

467.866

72

6.498

上表检验了限制模型和自由估计模型的卡方值及其卡方与自由度自比,两者的P都大于.05,且卡方与自由度之比都小于2,说明模型都拟合良好,这进一步说明无限制模型和限制模型无显著区别。

BaselineComparisons

Delta1

rho1

Delta2

CFI

.836

.831

.983

.854

.985

.982

.984

1.000

上表是基线比较结果,NFI、RFI、IFI、TLI、CFI指标在限制模型和无限制模型中并无明显改变。

RMSEA

LO90

HI90

PCLOSE

.024

.052

.937

.053

.922

.178

.163

.194

上表的RMSEA指标在限制模型和无限制模型中为相等<

.05,说明限制模型和无限制模型都有良好的模型拟合。

结论:

从上述标准化路径图和表格输出结果来看,限制模型和无限制模型的区别不显著,意味着性别对两个潜变量的调节效应不明显。

4.连续自变量(X)+连续调节变量(M)

这种类型相对来说操作比较简单,只需要把所有变量中心化之后就可以进行层次回归分析,标准化回归方程为:

Y=bx+cm+e1)

Y=b1x+cm+c1mx+e2)

对上述方程的检验同层次回归分析。

有学生对调节变量的本质和分析方法存有疑问,现解释如下。

先来说说什么是调节变量。

依据Baron和Kenny(1986)的定义,调节变量指:

影响自变量和因变量之间的关系方向或强度的定类(如性别、种族、社会阶层)或连续(如回报的程度)变量。

若从相关分析的角度来看,调节变量是零阶相关变量之外的第3个变量。

例如Stern,McCants和Pettine(1982)的研究发现,改变生活的重大事件与患病严重程度之间的关系受到该事件是否可以控制。

当事件不可控时(如配偶死亡),二者之间的关系更强;

当事件可控时(如离婚),二者关系变弱。

这里,事件是否可控,就是一个调节变量,是改变生活的重大事件(自变量)与患病严重程度(因变量)之间的调节变量。

调节变量的图式大家很明白了,若从相关分析的角度出发,调节变量可以用下图来表示:

Predictor:

预测变量,又称自变量;

Moderator:

调节变量;

OutcomeVariable:

结果变量,又称因变量。

可以看到,PredictorXModerator(自、调变量的乘积项)作为一个新的变量,考察它对因变量的相关。

若路径C的系数显著,则调节效应存在。

自变量与因变量之间的关系称为主效应,但若调节效应存在,考察主效应是不恰当的。

为什么?

因为自、因变量之间的关系取决于调节变量的取值。

与自变量-中介变量的关系(自变量是中介变量的前导变量antecedent)不同,调节变量与自变量地位平等,都是因变量的前导变量。

也就是说,调节变量通常扮演着与自变量相同的角色。

调节效应的分析方法选择

我们知道,分析方法只是一种解读数据的工具而已。

如同写文章,我们可以用笔来写,也可敲键盘输入,关键的是要知道写什么内容。

从统计角度看,是变量的类型和变量之间的关系假设决定了我们选择何种方法。

在这里,关系类型很明确了,就是要检验调节效应,所以只看变量类型。

变量分为连续型(定距、定比测量)和类别型(定类测量)。

自、调变量2者交互,有以下4种类型:

1、自变量、调节变量均为类别型变量

这种情况是最简单的,直接用多因素方差分析MANOVA就可以了。

在FixedFactor中输入自变量和调节变量,在Displaymeansfor窗口里输入二者的交互(也就是乘积项),然后看交互项是否显著即可(适用于自、调变量是二分的情况)。

若自、调变量是三分及以上,注意勾选事后检验(PosthocTest),可选择的方法多为:

LSD、Scheffee(组间样本不等)、Tukey(组间样本相等)。

2、自变量是连续变量,调节变量是类别变量。

这时典型的分析方法是:

按照调节变量的不同类型,分别求出自变量与因变量的相关,然后比较相关系数的是否有显著差别。

这种方法有两个缺点:

1、这样分析的前提是自变量在调节变量的不同水平上应该方差齐。

如果方差不齐,那么方差小的那组的自-因变量之间的相关要小于方差大的那组的自-因变量的相关。

2、如果因变量的测量误差是调节变量的函数,那么自-因变量之间的相关系数则是虚假的(Baron,Kenny,1986)。

假设上面2条都满足,用SPSS分析就很简单了:

按照调节变量的不同类别,分别求出自-因变量的相关系数。

别高兴得太早,麻烦的问题接踵而至:

如何看两个相关系数之间是否有显著差异?

这个问题在任何一本SPSS教程里都没有。

现参考竹家庄提供的方法:

什么是两个相关系数之差别?

这要从“相关系数也是一个统计量(astatistic)”这一基本概念说起。

什么是统计量?

样本中的每个变量都有一些特征值,如平均值(数值变量)或百分比(名目变量)、标准差、等等。

它们被称为“单变量统计量”(univariatestatistic)。

两个统计量(如两个平均值)之间的差别,也是一个统计量,叫做“双变量统计量”(bivariatestatistic),我们都知道如何用t-检验来检验两个平均值之间的差别(因此统计教科书和SPSS里都有t-检验)。

其实,双变量统计量不仅包括两个统计量之间的差别(differencebetweentwostatistics),也包括两个变量之间的关系(relationshipbetweentwovariables)。

注意,“两个统计量之间的差别”和“两个变量之间的关系”是两回事。

这里的“两个变量之关系”可以是相关系数、也可以是回归系数、甚至其它统计量(如reliabilitycoefficient,factorvariance,等等),当然,它们之间都是可以转化的。

为什么要检验两个相关系数之差别?

例如,一个学者的研究中有一个假设:

因为电视比互联网更普及,所以看电视与生活满足感的相关程度高于上网与生活满足感的相关程度。

他做了一个样本为1000人的调查,发现前两者的相关系数为0.27、后两者的相关系数为0.22。

既然两个变量之间的相关系数是统计量,也既然两个统计量之间的差别也是统计量,那么两个相关系数之间的差别也是一个统计量(thedifferencebetweentwostatisticsisanotherstatistic)。

任何统计量都是(也仅是)对样本某一特征的描述,而不是对研究总体相应特征的推测。

在这个的例子中,0.27和0.22分别是被调查的1000人中看电视与生活满足感的关系和上网与生活满足感的关系、而两者之差(0.05)则同样是该1000人中这两种关系强度之差别。

如果我们希望知道这种差别是否也在研究总体中存在,就必须做显著性检验。

其中道理,就如同他的样本中人均每天看电视30分钟、上网25分钟,是否可以因此推测总体中看电视时间多于上网时间一样,需要做一个t-检验。

如何检验两个相关系数之差别?

诚然,SPSS并不直接涉及如何检验两个相关系数之间的差别(或如何检验大部分其它统计量之间的差别或关系)。

我认为这是一个不应该的疏忽。

但是,SPSS提供的,不一定全是重要的;

而SPSS没有的,也未必不重要。

所以,再次呼吁:

“同学们,大家起来,不要做SPSS的奴隶”。

那么,如何检验两个相关系数的差别?

还是从大家熟悉的t-检验讲起。

我们知道,检验两个平均值的差别是将该差别除以其的标准误差(即该两个变量平均值的联合标准误差,见公式一的分母),并将得到的t-值与t-分布的临界值(如n=1000时,t-临界值=1.96)作比较,从而判断样本的两个平均值之间的差别是否显著(即是否存在于总体)。

(公式一)

同理,检验两个相关系数的差别(如本例中的0.27-0.22=0.05),是将其除以其标准误差,并将其结果与相对应的抽样分布临界值做比较。

这里有个技术性问题:

当总体的相关系数不等于0的时候(注意:

这是很重要的一个前提,但解释起来太复杂,这里就省略了),相关系数之差即不服从正态分布(z-分布)、也不服从t-分布(这是早在1915年已被“显著性检验之父”RonaldFisher所发现),因此必须先用以下的公式二(Fisherz-transformation),将两个相关系数(即r1和r2)分别转化成z-值(即z1和z2)(其中r是相关系数,ln是自然对数):

(公式二)

然后求出z1 

和z2的差(Δz),再除以z1 

和z2的联合标准误差(见公式三的分母,其中n是样本量),其结果也是一个z-值(即服从正态分布,因此可以根据其与正态分布的临界点来判断是否显著):

(公式三)

在本例中,r1 

=0.27,r2 

=0.22,因此,z1 

=0.2769,z2 

=0.2237,其差别=0.0532,标准误差=0.0448,z值=1.1880,小于z-分布在95%显著水平上的临界点1.96,也就是说,虽然在样本中看电视与生活满足感的相关程度要强于上网与生活满足感的相关程度,但是在总体中两种相关程度之间是没有差别的。

好了,总结一下,公式二和公式三告诉我们,两个相关系数之间的差别是否显著,只与两个因素有关:

相关系数(r)本身的大小和样本量(n)的大小。

他的样本有1000人,足够大矣。

但0.27和0.22之间的差别仍不显著,说明问题在于0.27还不够大、或0.22还不够小。

其实,我们可以根据上述公式,倒过来求出两个相关系数之差要达到在95%上显著的最小值。

这里就不赘言,当作家庭作业留给大家吧。

最后,你也许会问,上述计算一定要手算吗?

当然未必。

Excel里就有Fisher转化公式的函数Fisher(),即在括号里输入你的相关系数,就会替你算出其相对应的z-值。

然后,再按公式三在Excel里求出Δz,如以下的公式就可以一步到位算出本例的Δz:

=(fisher(0.27)-fisher(0.22)/sqrt(1/(1000-3)+1/(1000-3)) 

(公式四)

在SAS里,也有直接计算的程序。

如在SPSS里,则要写一个类似公式四的syntax,但因为没有fisher()函数可调用,所以其公式要复杂很多,还不如手工或Excel里计算来得方便。

现在再来说说不满足相关分析的2个前提时应该怎么办。

2个前提表明,相关系数受到方差的影响。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿教育 > 唐诗宋词

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1