第10章煤层气地质研究中的数值模拟技术中国矿业大学《煤层气地质学》傅教授课件Word文档下载推荐.docx

上传人:b****6 文档编号:18045753 上传时间:2022-12-13 格式:DOCX 页数:24 大小:313.65KB
下载 相关 举报
第10章煤层气地质研究中的数值模拟技术中国矿业大学《煤层气地质学》傅教授课件Word文档下载推荐.docx_第1页
第1页 / 共24页
第10章煤层气地质研究中的数值模拟技术中国矿业大学《煤层气地质学》傅教授课件Word文档下载推荐.docx_第2页
第2页 / 共24页
第10章煤层气地质研究中的数值模拟技术中国矿业大学《煤层气地质学》傅教授课件Word文档下载推荐.docx_第3页
第3页 / 共24页
第10章煤层气地质研究中的数值模拟技术中国矿业大学《煤层气地质学》傅教授课件Word文档下载推荐.docx_第4页
第4页 / 共24页
第10章煤层气地质研究中的数值模拟技术中国矿业大学《煤层气地质学》傅教授课件Word文档下载推荐.docx_第5页
第5页 / 共24页
点击查看更多>>
下载资源
资源描述

第10章煤层气地质研究中的数值模拟技术中国矿业大学《煤层气地质学》傅教授课件Word文档下载推荐.docx

《第10章煤层气地质研究中的数值模拟技术中国矿业大学《煤层气地质学》傅教授课件Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《第10章煤层气地质研究中的数值模拟技术中国矿业大学《煤层气地质学》傅教授课件Word文档下载推荐.docx(24页珍藏版)》请在冰豆网上搜索。

第10章煤层气地质研究中的数值模拟技术中国矿业大学《煤层气地质学》傅教授课件Word文档下载推荐.docx

虽然至今已有52个煤层气产量预测的数学模型问世,但是已形成计算机软件的不多,其中有ARRAYS(WELL1D、WELL2D)、PSU(PSU-1、PSU-2、PSU-3、PSU-4)、GRUSSP、COMET、COMETPC、COMET3D、COMET2和COALGAS,真正得到推广应用的可能只有GRUSSP、COMET和COALGAS软件。

尽管COMET2软件是目前功能最强大的煤层气模拟软件,但目前在煤层气勘探开发研究和生产中应用最广泛的软件是COMET3D。

虽然我国瓦斯抽放开展得较早,煤层气开发也进行了相当一段时间,但总体而言煤层气储层模拟工作开展不多。

近年来,一些单位引进了COMET或COALGAS软件,进行过零星的模拟研究,但针对中国煤储层特点的储层模拟软件尚没有。

二、煤层气产出的地质和数学模型

煤层气的产出大致可分为三个阶段。

第一阶段称为单相流动阶段,随着井筒附近压力的下降,首先只有水沿着裂隙流向井筒而产出,因为这时压力下降比较少,井壁附近只有单相(水)流动(图6-1)。

第二阶段称为非饱和单相流动阶段,储层压力进一步下降,开始有一定数量的甲烷解吸出来,形成孤立的气泡,这些气泡不能流动,但它们阻碍了水的流动。

第三阶段为气、水两相流动阶段,随着解吸甲烷的增加,气泡相互连接形成流线,气、水两相同时流向井筒而产出。

这三个阶段是一个连续的过程,随着时间的延长,由井筒沿径向逐渐向周围的煤层中推进。

地面煤层气井气、水产能也可以分成三个阶段。

第一阶段为抽水降压阶段,通过抽水,形成一个以井筒为中心的降压漏斗(图10-2),当压力降到临界解吸压力以下时,甲烷开始解吸,煤层气的产量逐渐升高,这一阶段的时间可在几天或数月之间。

第二阶段为稳定生产阶段,产气量相对稳定,产水量逐渐下降,产气量在此阶段内达到最高峰,这一阶段通常在3~5年之间(图10-2)。

第三阶段为产量下降阶段,此阶段内只产出少量的水,产气量逐渐下降,生产时间一般在10年以上。

 

图10-1煤层气排水降压产出示意图

图10-2煤层气、水产量变化的三个阶段

煤层气的产出包括解吸—扩散—渗流三个阶段,这与砂岩、碳酸盐岩等储层中的常规天然气只有通过岩石孔隙渗流的产出过程具有很大的差别。

1、扩散与解吸

煤层气的解吸与吸附是一个可逆过程,所以其解吸同样可用朗格缪尔方程来描述。

(10-1)

式中:

VL为Langmü

ir体积;

PL为Langmü

ir压力;

Pg为煤储层中的压力;

C(P)为平衡吸附气体浓度;

该方程在煤基质和裂隙之间提供了一个边界条件,通过扩散由基质进入裂隙中的煤层气用费克定理来描述:

(10-2)

r为解吸时间,由实验测定;

Vm为煤基质体积;

C(t)为t时刻基质中煤层气的平均浓度;

qm为由基质进入裂隙的煤层气量;

可将其改写为导数形式:

(10-3)

结合初边值条件:

C(t)=Cit=0

C(t)=C(Pg)t>

0C∈Γ1

式中:

Γ1为基质的外部边界。

经求解得:

(10-4)

利用式(10-4)可以计算出解吸进入裂隙系统的煤层气数量。

2、水—气二相裂隙渗流

煤层气、水在煤层裂隙中的二相渗流可用流体的连续方程和达西定律来描述。

1)流体连续方程

考虑煤储层中的任意微元控制体(图10-3)。

控制体边长分别为△x、△y、△z,x、y、z的正方向分别为:

右、内、上,即流体有左面流入、右面流出,前面流入、后面流出均为正。

假定x—y平面与煤层顶、底面平行(图10-3)。

控制体同样包括了基质块体及裂隙孔隙两套体系。

假定甲烷可压缩,水近似不可压缩,二相之间没有质量交换。

首先考虑裂隙系统中的连续方程,根据物质平衡原理,在任意时间△t内,有:

Qd=Qr(10-5)

Qd为流入、流出控制体的甲烷质量差;

Qr为控制体裂隙系统中游离甲烷质量变化率。

图10-3煤储层中控制体示意图

在x方向上,△t时间内流入控制体的甲烷质量为:

ρgVgx△y△z△t.(10-6)

ρg为气体密度;

Vgx为气体在x方向上的速度分量

在△t时间内,流出控制体的质量为:

(10-7)

所以,在△t时间内,沿x方向流入、流出控制体的质量差为:

(10-8)

同理,在△t时间内,沿y和z轴方向流入、流出控制体的质量差为分别为:

(10-9)

(10-10)

Vgy和Vgz分别为煤层气在y和z方向上的速度分量

控制体裂隙系统煤层甲烷质量为:

(10-11)

Sg—煤层气的饱和度;

—裂隙孔隙率

所以,在△t时间内,裂隙系统中煤层甲烷质量变化率为:

(10-12)

将式(10-8)、(10-9)、(10-10)和(10-12)代入式(10-5),得气体的渗流连续方程:

(10-13)

由于单元控制体的任意性,有:

(10-14)

同理,得水的渗流连续方程:

(10-15)

式中,Vwx、Vwy、Vwy、分别为水在x、y、z方向上的速度分量;

ρw为水的密度;

Sw为裂隙系统中的水饱和度。

利用哈密尔顿算子

代替对x、y、z的求偏,同时加入源、汇项,有:

(10-16)

2)达西定律

流体在诸如孔隙性砂岩或裂隙性的煤储层中流动属渗流,与正常径流或管道中的流动有很大的差别,其流动速度与渗透率、压差、流体流过的横截面积和长度以及流体粘度等密切相关。

这一过程可用达西定律来表示:

(10-17)

上述各式中:

Vg、Vw—流体在煤储层裂隙系统中的渗流速度(w,g—分别代表水和气);

K—煤储层层的绝对渗透率;

ρg、ρw—流体的密度;

Kg、Kw—流体的相对渗透率;

μg、μw—流体的粘滞系数;

Pg、Pw—流体的压力;

g—重力加速度;

h—相对标高。

将式(10-17)代入方程(10-16)中,有:

(10-18)

上述二方程中,Pw、Pg、Sw、Sg分别满足下面两个附加方程:

(10-19)

式中PC为毛细管压力,Sg和Sw是饱和度的函数,由实验测定。

将方程(10-18)和(10-19)联立起来,这样方程中就只含有Pw、Pg、Sw、Sg四个未知数,与方程个数相同。

结合初边值条件即构成整个煤层气产能模拟的数学模型。

3、数学模型的解算

描述煤层气运移的偏微分方程是一个复杂、高阶非线性方程,目前一般采用有限差分法进行求解。

其基本原理是利用导数的概念,将未知数Pw、Pg、Sw和Sg对空间或时间微分式转化成偏导数的形式,形成非线性方程组,进一步转变为线性方程组,通过矩阵求解上面的几个未知数。

线性代数

方程组

偏微分

方程组

非线性

数值解

离散化线性化求解矩阵

早期的求解方法一般采用IMPES(Theimplicitpressure-explicitsaturationmethod),即用隐式法求解储层压力方程,用显示法求解饱和度。

该方法计算工作量小,方法简单,但它只适应于一般的弱非线性渗流,对于向煤层气产出这样复杂的非线性渗流问题,该解法收敛速度慢,稳定性差,尤其是对一些大井田、大空间步长的计算问题尤为突出,有时模型甚至发散无法运行。

目前的模拟软件一般采用全隐式求解方法,这种方法的精度高,方程解收敛性强,这足以弥补算法相对较复杂的弊端。

同时,近年来快速提升的计算机硬件水平也能够保证运算的快速性。

要对以上方程获得定解,还需要设置初始条件和边界条件。

初始条件是取某一时刻作为模拟的初始时间点,给出这一时刻Pw、Pg、Sw、Sg的数值。

边界条件包括内边界条件和外边界条件。

内边界条件为井壁,边界条件包括该处Pw、Pg、Sw、Sg的数值和源汇项等。

方程(10-18)中的源汇项qg、qw,一般为给定产量或给定井底流动压力。

如为给定产量,则可直接进入方程;

如为给定井底流动压力,则需按稳定流井筒产量计算方法处理后,再进入方程。

其计算方法如下:

(10-20)

为形状因子;

h为煤层厚度;

为有效供给半径;

井筒半径;

为气相流动系数;

为水相流动系数;

S为井筒表皮系数;

Pg为气相流动系数;

Pw为水相流动系数;

Pwf为井底流动压力。

外边界条件即煤层气井开采的范围。

通常有两种边界,一种是人工边界,在煤层构造简单、延续性较好的地区,其煤层气井排产范围主要决定于煤层降压范围;

另一种是自然边界,如煤层尖灭、断层及煤层风氧化带等。

在外边界处,需要给出边界上的该处Pw、Pg、Sw、Sg的数值。

三、煤层气储层模拟研究流程和主要工作内容

储层模拟工作的流程,可以概括为以下十个步骤,1)明确模拟研究对象,如是针对单井或是井网,井网的井数和分布特征;

2)选择模拟软件;

3)收集相关地质和工程数据,包括煤层、煤质、煤体形态、含气性及储层物性等地质数据和初始储层压力、初始气水饱和度、初期气、水产量等生产数据;

4)构建储层地质模型;

5)储层模拟网格设计;

6)基础数据提取和录入;

7)边界条件设置;

8)模拟计算,根据模拟计算的目的,可进行历史匹配、敏感性分析或产量预测等;

9)分析模拟成果,如进行经济评价等;

10)编写研究报告。

下面简单介绍一些重要步骤中所涉及的工作内容。

1、模拟网格设计

模拟网格是将煤层气井产气区域剖分成一系列不连续块状单元的系统,它用于数字化地说明储层流体的流动。

同时,描述流体流动的偏微分方程的解算也需要进行空间离散。

举图10-4网格单元及其上的储层压力参数

一个最简单的例子,对于储层

压力在x方向上的一阶偏导数,如图10-4所示,如果正方形单元各端点的储层压力分别为Pi-1、Pi、Pi+1,单元在x方向上的长度为h,则储层压力在x方向上的一阶偏导数的显式差分式为:

(10-21)

模拟网格主要有两种类型,一种是方格网,一种是径向网格(图10-5)*。

方格网用正交网格块表示储层,可以模拟一维至三维的流体流动,同时可以较方便地进行井网模拟。

大多数研究使用的径向网格是二维的,在垂向上可以剖分成10~20层。

尽管径向网格仅限于模拟单个生产井,但由于煤层气井生产过程中,流体的流动可认为是径向的,所以它很适用于研究锥进效应和其他井筒效应。

还有一些特殊的网格如角点几何网、曲线网格、混合网格和局部细分网等。

在选择了网格类型之后,还要根据储层的空间形态等特征确定网格块的大小。

网格块的大小决定图10-5三维方格网和径向网示意图

了计算的精度,其尺寸也小,精度

越高。

但是,计算工作量也随网格块的减小而增加。

2、基础数据

在进行储层模拟之前,需要收集的主要数据如表10-1所示。

针对不同目的、不同地区的模拟研究,数据的种类可能会有一些差异。

表10-1煤层气储层模拟所需要的基本数据

储层描述数据

裂隙绝对渗透率

裂隙渗透率方向

垂直渗透率

孔隙度

原始含气量

等温吸附曲线

解吸压力

吸附时间

扩散系数

裂隙间距

孔隙体积压缩系数

煤岩基质块体收缩系数

储层几何特征

构造高程(倾向)

埋深

净厚度

层理(各层的)

灰分

井孔排泄面积

原始储层压力

初始水饱和度

气-水相对渗透率

气-水毛细管压力

含水层岩性特征

流体PVT数据

气体地层体积系数

气体粘度

气体比重

气体成分

水地层体积系数

水粘度

水的储罐密度

水中气的溶解度

井参数及其它数据

最小时间步长

最大时间步长

时间步长倍增器

随时间变化的水产量

随时间变化的气产量

随时间变化的井底压力

钻井产能指标

表皮因子

时间步长上最大饱和度、压力变化

有限差分解允许限度

允许的最大水产量

允许的最大气产量

允许的最小井底压力

井筒半径

诱生裂隙长度

3、历史匹配

历史匹配是校正一个模拟模型与单井或井网过去的动态是否一致的过程。

这个过程涉及到模拟动态与实际动态的比较,如果两者不一致,调整一个或多个参数,重新运行模拟程序直至获得一个可接受的匹配方案。

历史匹配工作可以起到如下的作用,一是为以后历史时期的生产预测提供基础;

二是找出储层和过程描述资料的不足;

三是找出低于模拟产能的井孔(可能重新进行完井);

四是标出相对高残余含气量区域作为潜在开发区或找出钻探靶区。

历史匹配是一个工作量大而且繁琐的工作。

这主要是因为历史匹配的不唯一性,产生效果良好的数据可能有多组。

同时,当关键参数如裂隙渗透率和含气量未知时,靠模拟程序获得可靠的历史匹配会遇到很多难题,在这种情况下,利用模拟程序和工程判断进行敏感性分析,可有助于解决数据的不确定性问题。

进行历史匹配时可调整的参数如表10-2所示。

表10-2历史匹配参数

经常调整

有时调整

经常不调整

裂隙孔隙度

气水相对渗透率

诱生裂隙长度或表皮因子

含气量

井孔生产指数

洞穴带大小

初始条件

气水界面

储层构造

厚度

气水PVT数据

孔隙压缩率

毛细管压力

4、敏感性分析

使用模拟程序进行敏感性参数分析,就是确定不确切的或变化大的数据对井动态的效应,确定必须测量的数据的精确程度和评价各种作业程序的经济效应。

关键参数如裂隙渗透率,经常不能实测或不得不通过与附近井田类比而进行估算。

如果缺乏太多的数据,详细的历史匹配也不实际,但可以通过改变某些数据,获得潜在气采收率的大概情况。

这样一种方法可在生产前期使用,但结果大多是预测性的。

虽然获得了一些实测数据,但显得很离散,在这种情况下,实测值范围内的参数模拟有助于确定测试中的误差容限以及确定哪些数据对评价储层动态最为关键。

通常这些数据包括裂隙渗透率、含气量和等温吸附曲线。

5、产量预测

一旦生产历史被成功匹配,历史匹配数据就能用于预测气水产量和井田压力。

预测也能用于发现不适合的储层管理程序并找出改善的方法,发现历史匹配储层描述中的短处,监测整个气田寿命期间的储层动态。

第二节煤层气地质演化史数值模拟技术

煤层气地质演化史数值模拟工作就是以现代煤层气地质学、煤田地质学、油气地质学和数学地质理论为基础,运用现代计算机技术,首先建立定量表述煤层气地质演化历史中各种地质作用的地质模型和数学模型并研制计算机模拟软件,再分析整理研究区煤层、煤质、含气性、储层物性数据并进行区域构造史、埋藏史、热史和生烃史研究,然后利用软件动态解算从煤层形成到现在的整个演化过程,定量获取有机质的成熟度、生气量、含气量、储层压力和各种散失量等参数,最终定量查明特定区域的煤层气生成、运移、聚集和散失的地质演化历史。

计算的结果可用于区域含气性预测、煤层气开发区域优选以及煤矿安全生产决策等方面。

煤层气地质演化史数值模拟是沉积盆地模拟(Basinmodelling)的一个分支,后者是从石油天然气地质的物理化学机理出发,首先建立地质模型,然后建立数学模型,最后编制相应的软件,从而在时空概念下,由计算机定量地模拟油气盆地的形成和演化、烃类的生成、运移和聚集过程,研究内容包括盆地充填演化和沉积层序模拟、盆地构造和沉降机制模拟(包括构造与油层、沉降和综合模拟分析)、热体制、有机质热演化模拟、油气生产、运移和聚集过程模拟、储层不均一性模拟等等。

油气盆地模拟是进行煤层气地质演化史数值模拟研究的重要理论和方法基础。

一、煤层气地质演化史模型

地史时期,在一定的构造演化史、埋藏史和热力场演化史的背景下,煤层气的地质演化历程包括了有机质成熟生成煤层气、煤层气在煤储层中赋存和煤层气从煤储层中逸散等三个主要过程。

煤层气地质演化史模型所表述的就是上述过程,该模型包括以下几个子模型:

1)煤层气聚散子模型;

2)有机质成熟生烃子模型;

3)储层压力和煤层气赋存子模型;

4)煤层气散失子模型;

5)基本参数子模型。

1、煤层气聚散子模型

煤层气的演化过程遵守质量守恒原理,即在煤层中的任意单元内,煤有机质生成的煤层气总量、单元中甲烷赋存总量和以各种方式从单元中散失的总量之间呈动态平衡关系。

即:

(10-22)

式中,Qg为任意单元内煤有机质生气总量;

Qp为赋存于单元内煤层气总量;

Qd为从单元中逸失的煤层气总量。

式10-22简明而又深刻地揭示了煤层气地质演化历程中几个关键变量的动态平衡关系,是解算煤层气地质演化史的重要基础。

实际上,以下的各子模型均是围绕该式中的三个变量来进行的。

2、有机质成熟生烃子模型

煤层形成之后,在古构造运动的作用下,有一个深埋的过程,煤层中的有机质在古地热场影响下发生成熟作用而产生一系列物理化学变化并生成烃类。

在此过程中,有机质成熟史及烃类生成的数量和种类受到构造、热史的控制。

因此,定量求取有机质生烃量的前提是查明古构造运动史、埋藏史和古地热场演化史,恢复有机质成熟史,并且还需要现今有机质丰度、有机质类型和有机质成熟度等基础数据。

对于腐殖煤,其有机质以Ⅲ型干酪根为主,在成熟作用过程中会产生以甲烷为主的大量烃气。

煤层气的生成量可用下式表示:

式中,Qg为生气量;

F(Ro,max)为生气函数;

Ro,max为镜质组最大反射率;

Mr为纯有机质含量。

式(10-22)中的生气函数,除了与用镜质组最大反射率表示的成熟度有关外,还与有机质的组成和成熟演化历程有关,可以通过对Ⅲ型干酪根热模拟生烃试验的多项式拟合来获得。

镜质组最大反射率是地质历史演化过程中时间的函数,可以根据具体情况,利用TTI法、LOM法、EASY%RO等方法获得。

关于构造史、埋藏史和热史的研究方法,请参见相关文献。

煤层气的形成经历了早期生物气和后期的热成因气阶段,对于中生代以前形成的煤层,因为年代久远,而且早期煤层埋藏浅多已逸散,因此可以将生物成因气忽略。

3、储层压力和煤层气赋存子模型

煤储层为具有双重孔隙系统的特殊储层,煤层气主要以吸附相、游离相和水溶相的形式赋存在其中,对于大时间跨度的地质演化史模拟,因为水溶相甲烷含量不大,将水溶相忽略掉以简化计算。

吸附相可由朗格缪尔方程表示,游离相则用修正的理想气体方程表示。

而在朗格谬尔方程和理想气体方程中,储层压力均为重要的变量,所以,它是表达煤层气赋存的关键参数。

储层压力指储层中流体所受到的压力。

地史演化过程中储层压力受储层内部地质流体重力势能、煤有机质生烃增压及外部上覆静岩压力和构造应力等因素的控制和影响。

自然状态下的煤储层可分为封闭体系、半开放体系和开放体系三种类型,根据不同地质条件,采用一定的方法就能计算出储层压力。

4、煤层气散失子模型

煤有机质开始成熟生气之后,煤层含气量逐渐上升,煤层气的散失作用亦随之发生。

散失作用的方式有三种,即扩散散失、盖层突破散失和渗流散失,即:

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 党团工作 > 其它

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1