届高考数学理最新热点及解题方法指导含答案解析Word文件下载.docx

上传人:b****5 文档编号:17974914 上传时间:2022-12-12 格式:DOCX 页数:31 大小:188.98KB
下载 相关 举报
届高考数学理最新热点及解题方法指导含答案解析Word文件下载.docx_第1页
第1页 / 共31页
届高考数学理最新热点及解题方法指导含答案解析Word文件下载.docx_第2页
第2页 / 共31页
届高考数学理最新热点及解题方法指导含答案解析Word文件下载.docx_第3页
第3页 / 共31页
届高考数学理最新热点及解题方法指导含答案解析Word文件下载.docx_第4页
第4页 / 共31页
届高考数学理最新热点及解题方法指导含答案解析Word文件下载.docx_第5页
第5页 / 共31页
点击查看更多>>
下载资源
资源描述

届高考数学理最新热点及解题方法指导含答案解析Word文件下载.docx

《届高考数学理最新热点及解题方法指导含答案解析Word文件下载.docx》由会员分享,可在线阅读,更多相关《届高考数学理最新热点及解题方法指导含答案解析Word文件下载.docx(31页珍藏版)》请在冰豆网上搜索。

届高考数学理最新热点及解题方法指导含答案解析Word文件下载.docx

又0<

1,∴g′(x)<

0.

∴函数g(x)在(0,1)上是减函数.

1,∴g(x1)>

g(x2),

∴x2

,故选C.

2.已知定义在R上的函数g(x)的导函数为g′(x),满足g′(x)-g(x)<0,若函数g(x)的图象关于直线x=2对称,且g(4)=1,则不等式>1的解集为________.

【答案】

(-∞,0)

【解析】∵函数g(x)的图象关于直线x=2对称,

∴g(0)=g(4)=1.

设f(x)=,

则f′(x)==.

又g′(x)-g(x)<0,∴f′(x)<0,

∴f(x)在R上单调递减.

又f(0)==1,∴f(x)>f(0),∴x<0.

3.已知f(t)=log2t,t∈[,8],对于f(t)值域内的所有实数m,不等式x2+mx+4>

2m+4x恒成立,求x的取值范围.

【解析】∵t∈[,8],∴f(t)∈.

原题转化为m(x-2)+(x-2)2>

0恒成立,

当x=2时,不等式不成立,∴x≠2.

令g(m)=m(x-2)+(x-2)2,m∈.

问题转化为g(m)在m∈上恒大于0,

则即

解得x>

2或x<

-1.

∴x的取值范围是(-∞,-1)∪(2,+∞).

二、函数与方程思想在三角函数、平面向量中的应用

三角函数中有关方程根的计算,平面向量中有关模、夹角的计算,常转化为函数关系,利用函数的性质求解.

【例2】 

(1)若方程cos2x-sinx+a=0在上有解,则a的取值范围是________.

(-1,1]

【解析】法一:

把方程变形为a=-cos2x+sinx,

设f(x)=-cos2x+sinx,x∈,

显然,当且仅当a属于f(x)的值域时有解.

因为f(x)=-(1-sin2x)+sinx=2-,且由x∈知sinx∈(0,1],易求得f(x)的值域为(-1,1],故a的取值范围是(-1,1].

法二:

令t=sinx,

由x∈,可得t∈(0,1].

将方程变为t2+t-1-a=0.

依题意,该方程在(0,1]上有解,

设f(t)=t2+t-1-a,其图象是开口向上的抛物线,对称轴t=-,如图所示.

因此,f(t)=0在(0,1]上有解等价于

即所以-1<

a≤1,

故a的取值范围是(-1,1].

(2)已知a,b,c为平面上三个向量,又a,b是两个相互垂直的单位向量,向量c满足|c|=3,c·

a=2,c·

b=1,则对于任意实数x,y,|c-xa-yb|的最小值为________.

【答案】2

【解析】由题意可知|a|=|b|=1,a·

b=0,

又|c|=3,c·

b=1,

所以|c-xa-yb|2=|c|2+x2|a|2+y2|b|2-2xc·

a-2yc·

b+2xya·

b

=9+x2+y2-4x-2y

=(x-2)2+(y-1)2+4,

当且仅当x=2,y=1时,(|c-xa-yb|2)min=4,

所以|c-xa-yb|的最小值为2.

(1)研究此类含参数的三角函数方程的问题,通常有两种处理思路:

一是分离参数构建函数,将方程有解转化为求函数的值域.二是换元,将复杂方程问题转化熟悉的二次方程,进而利用二次方程解的分布情况构建不等式或构造函数加以解决.

(2)平面向量中含函数(方程)的相关知识,对平面向量的模进行平方处理,把模问题转化为数量积问题,再利用函数与方程思想来分析与处理,这是解决此类问题一种比较常见的思维方式.

1.(2018届高三·

广东五校协作体第一次诊断考试)已知向量a=(λ,1),b=(λ+2,1),若|a+b|=|a-b|,则实数λ的值为(  )

A.-1B.2

C.1D.-2

【答案】A

由|a+b|=|a-b|,可得a2+b2+2a·

b=a2+b2-2a·

b,所以a·

b=0,故a·

b=(λ,1)·

(λ+2,1)=λ2+2λ+1=0,解得λ=-1.

a+b=(2λ+2,2),a-b=(-2,0),

由|a+b|=|a-b|,

可得(2λ+2)2+4=4,解得λ=-1.

2.若关于x的方程2sin=m在上有两个不等实根,则m的取值范围是(  )

A.(1,)B.[0,2]

C.[1,2)D.[1,]

【答案】C

【解析】2sin=m在上有两个不等实根等价于函数f(x)=2sin的图象与直线y=m有两个交点.在同一坐标系中作出y=f(x)与y=m的图象如图所示,由图可知m的取值范围是[1,2).

3.在△ABC中,内角A,B,C所对的边分别为a,b,C.已知△ABC的面积为3,b-c=2,cosA=-,则a=________.

【答案】8

【解析】在△ABC中,由cosA=-,可得sinA=,

所以解得

三、函数与方程思想在数列中的应用

数列的通项与前n项和是自变量为正整数的函数,可用函数的观点去处理数列问题,常涉及最值问题或参数范围问题,一般利用二次函数或一元二次方程来解决.

【例3】 已知数列{an}是各项均为正数的等差数列,a1=2,且a2,a3,a4+1成等比数列.

(1)求数列{an}的通项公式an;

(2)设数列{an}的前n项和为Sn,bn=++…+,若对任意的n∈N*,不等式bn≤k恒成立,求实数k的最小值.

【解析】

(1)因为a1=2,a=a2(a4+1),

又因为{an}是正项等差数列,故公差d≥0,

所以(2+2d)2=(2+d)(3+3d),(列出方程)

解得d=2或d=-1(舍去),

所以数列{an}的通项公式an=2n.

(2)由

(1)知Sn=n(n+1),

则bn=++…+

=++…+

=-+-+…+-

=-=

=,

令f(x)=2x+(x≥1),(构造函数)

则f′(x)=2-,

当x≥1时,f′(x)>

所以f(x)在[1,+∞)上是增函数,

故当x=1时,f(x)min=f

(1)=3,

即当n=1时,(bn)max=,

要使对任意的正整数n,不等式bn≤k恒成立,

则须使k≥(bn)max=,

所以实数k的最小值为.

本题完美体现了函数与方程思想的应用,第

(1)问直接列方程求公差;

(2)问求出bn的表达式,说明要求bn≤k恒成立时k的最小值,只需求bn的最大值,从而构造函数f(x)=2x+(x≥1),利用函数求解.

1.(2017·

洛阳第一次统一考试)等差数列{an}为递增数列,若a+a=101,a5+a6=11,则数列{an}的公差d的值为(  )

A.1B.2

C.9D.10

【解析】依题意得(a1+a10)2-2a1a10=(a5+a6)2-2a1a10=121-2a1a10=101,∴a1a10=10.

又a1+a10=a5+a6=11,a1<

a10,

∴a1=1,a10=10,d==1.

2.设数列{an},{bn}满足a1=a>

0,an+1=an,且bn=ln(1+an)+a,n∈N*,证明:

1.

【解析】证明:

由a1=a>

0,an+1=an知,an>

0(n∈N*),

故bn>

0(n∈N*).

因为<

1,所以bn-an>

0,

构造函数f(x)=ln(1+x)+x2-x(x>

0),

则其导数f′(x)=+x-1=,

当x>

0时,f′(x)>

0,故f(x)在(0,+∞)上为增函数,所以f(x)>

f(0)=0,即bn-an>

0,所以<

,所以ln(1+an)-an<

构造函数g(x)=ln(1+x)-x(x>

则导函数g′(x)=-1=,

0时,g′(x)<

0,故g(x)在(0,+∞)上为减函数,

故g(x)<

g(0)=0,所以ln(1+an)-an<

所以ln(1+an)+a<

an+a,即bn<

an+a,

所以>

,所以<

四、函数与方程思想在解析几何中的应用

解析几何中有关的求方程、求值等问题常常需要通过解方程(组)来解决,求范围、最值等问题常转化为求函数的值域、最值来解决.

【例4】 已知椭圆C:

+=1(a>

b>

0)的右焦点为F(1,0),如图所示,设左顶点为A,上顶点为B,且·

=·

.

(1)求椭圆C的方程;

(2)若过F的直线l交椭圆于M,N两点,试确定·

的取值范围.

(1)由已知,A(-a,0),B(0,b),F(1,0),

则由·

,得b2-a-1=0.

∵b2=a2-1,

∴a2-a-2=0,

解得a=2.(列出方程)

∴a2=4,b2=3,∴椭圆C的方程为+=1.

(2)①若直线l斜率不存在,则l:

x=1,

此时M,N,·

=-.

②若直线l斜率存在,设l:

y=k(x-1),M(x1,y1),N(x2,y2),则由消去y得

(4k2+3)x2-8k2x+4k2-12=0,(列出方程)

∴x1+x2=,x1x2=.

∴·

=(x1-1,y1)·

(x2-1,y2)

=(1+k2)[x1x2-(x1+x2)+1]

=.(转化为函数)

∵k2≥0,∴0<

≤1,∴3≤4-<

4,

∴-3≤·

-.

综上所述,·

的取值范围为.

本题利用了函数与方程思想,首先由已知条件列出关于a,b的方程,求出a,b值,再求·

的范围时转化为关于k的函数,利用函数性质求解.

1.设椭圆中心在坐标原点,A(2,0),B(0,1)是它的两个顶点,直线y=kx(k>0)与AB相交于点D,与椭圆相交于E,F两点.若=6,则k的值为________.

【答案】或

【解析】依题意得椭圆的方程为+y2=1,直线AB,EF的方程分别为x+2y=2,y=kx(k>0).如图,设D(x0,kx0),E(x1,kx1),F(x2,kx2),其中x1<x2,且x1,x2满足方程(1+4k2)x2=4,故x2=-x1=.

由=6知x0-x1=6(x2-x0),

得x0=(6x2+x1)=x2=.

由D在AB上知x0+2kx0=2,

得x0=.

所以=,

化简得24k2-25k+6=0,

解得k=或k=.

2.已知直线l:

y=k(x+1)与抛物线C:

y2=4x交于不同的两点A,B,问:

是否存在k,使以AB为直径的圆过抛物线C的焦点F.

【解析】F的坐标为(1,0),设A(x1,y1),B(x2,y2),

则y1=k(x1+1),y2=k(x2+1),

当k=0时,l与C只有一个交点不合题意,因此k≠0.

将y=k(x+1)代入y2=4x,

消去y,得k2x2+2(k2-2)x+k2=0,①

依题意,x1,x2是①的不相等的两个根,

以AB为直径的圆过F⇔AF⊥BF⇔kAF·

kBF=-1

⇔·

=-1⇔x1x2+y1y2-(x1+x2)+1=0

⇔x1x2+k2(x1+1)(x2+1)-(x1+x2)+1=0

⇔(1+k2)x1x2+(k2-1)(x1+x2)+1+k2=0,③

把x1+x2=,x1x2=1代入③得2k2-1=0,解得k=±

经检验k=±

适合②式,综上所述,k=±

为所求.

五、函数与方程思想在立体几何中的应用

立体几何中有关线段、角、面积、体积的计算,经常需要运用列方程或建立函数表达式的方法加以解决.

【例5】 (2016·

江苏高考)现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥PA1B1C1D1,下部的形状是正四棱柱ABCDA1B1C1D1(如图所示),并要求正四棱柱的高O1O是正四棱锥的高PO1的4倍.

(1)若AB=6m,PO1=2m,则仓库的容积是多少?

(2)若正四棱锥的侧棱长为6m,则当PO1为多少时,仓库的容积最大?

(1)由PO1=2知O1O=4PO1=8.

因为A1B1=AB=6,

所以正四棱锥PA1B1C1D1的体积

V锥=·

A1B·

PO1=×

62×

2=24(m3);

正四棱柱ABCDA1B1C1D1的体积

V柱=AB2·

O1O=62×

8=288(m3).

所以仓库的容积V=V锥+V柱=24+288=312(m3).

(2)设A1B1=am,PO1=hm,

则0<h<6,O1O=4h.连接O1B1.

因为在Rt△PO1B1中,

O1B+PO=PB,

所以2+h2=36,

即a2=2(36-h2).

于是仓库的容积V=V柱+V锥=a2·

4h+a2·

h=a2h=(36h-h3),0<h<6,(转化为函数)

从而V′=(36-3h2)=26(12-h2).

令V′=0,得h=2或h=-2(舍).

当0<h<2时,V′>0,V是单调增函数;

当2<h<6时,V′<0,V是单调减函数.

故当h=2时,V取得极大值,也是最大值.

因此,当PO1=2m时,仓库的容积最大.

(1)本题第

(2)问利用了函数与方程思想,首先由已知条件列出关于a,h的方程,再由公式把体积V表示成关于高h的函数,最后利用导数求解.

(2)立体几何及其实际应用问题中的最优化问题,一般是利用函数的思想解决,思路是先选择恰当的变量建立目标函数,然后再利用有关知识,求函数的最值.

湖南五市十校联考)圆锥的母线长为L,过顶点的最大截面的面积为L2,则圆锥底面半径与母线长的比的取值范围是(  )

A.B.

C.D.

【答案】D

【解析】设圆锥的高为h,轴截面的顶角为θ,则过顶点的截面的面积S=×

2r×

h=L2sinθ≤L2,sinθ≤1,当截面为等腰直角三角形时取最大值,故圆锥的轴截面的顶角必须大于或等于90°

,得L>

r≥Lcos45°

=L,所以≤<

2.(2017·

福州质检)在三棱锥ABCD中,△ABC为等边三角形,AB=2,∠BDC=90°

,二面角ABCD的大小为150°

,则三棱锥ABCD的外接球的表面积为(  )

A.7πB.12π

C.16πD.28π

【解析】满足题意的三棱锥ABCD如图所示,设三棱锥ABCD的外接球的球心为O,半径为R,△BCD,△ABC的外接圆的圆心分别为O1,O2,易知O,O1,O2在同一平面内,由二面角ABCD的大小为150°

,易得∠OO1O2=150°

-90°

=60°

依题意,可得△BCD,△ABC的外接圆的半径分别为

r1===,r2==2,

所以即

解得R=,所以三棱锥ABCD的外接球的表面积为4πR2=28π.

3.平面内边长为a的正三角形ABC,直线DE∥BC,交AB,AC于D,E,现将△ABC沿DE折成60°

的二面角,求DE在何位置时,折起后A到BC的距离最短,最短距离是多少?

【解析】如图,点A沿DE折起到A′,过A作AG⊥BC于G,交DE于F,连接A′F,A′G,

因为△ABC为正三角形,又DE∥BC,所以AG⊥DE.又G,F分别为BC,DE的中点,所以DE⊥平面A′FG,BC⊥平面A′FG,

所以∠A′FG是二面角的平面角.

由题知∠A′FG=60°

,所以A′G为所求,

在△A′FG中,设FG=x,则A′F=a-x.

由余弦定理,得

A′G2=A′F2+FG2-2A′F·

FG·

cos60°

=2+x2-2×

·

=32+a2,

所以当x=a时,(A′G)min=a,

即DE恰为△ABC中位线时,折起后A到BC的距离最短,最短距离为a.

快稳细活 填空稳夺

一、直接法

直接法就是从题设条件出发,运用定义、定理、公式、性质、法则等知识,通过变形、推理、计算等得出正确的结论.

【例1】 (2016·

全国卷Ⅱ)△ABC的内角A,B,C的对边分别为a,b,c,若cosA=,cosC=,a=1,则b=________.

【解析】因为A,C为△ABC的内角,且cosA=,cosC=,

所以sinA=,sinC=,

所以sinB=sin(π-A-C)=sin(A+C)=sinAcosC+cosAsinC=×

+×

=.

又a=1,所以由正弦定理得b==×

1.(2015·

全国卷Ⅰ)若函数f(x)=xln(x+)为偶函数,则a=________.

【答案】1

【解析】∵f(x)为偶函数,∴f(-x)-f(x)=0恒成立,

∴-xln(-x+)-xln(x+)=0恒成立,∴xlna=0恒成立,∴lna=0,即a=1.

2.(2014·

全国卷Ⅰ)(x-y)(x+y)8的展开式中x2y7的系数为________.(用数字填写答案)

【答案】-20

(x+y)8中,Tr+1=Cx8-ryr,令r=7,再令r=6,得x2y7的系数为C-C=8-28=-20.

二、特殊值法

当填空结论唯一或题设条件中提供的信息暗示答案是一个定值时,我们只需把题材中的参变量用特殊值代替即可得到结论.

【例2】 (2016·

山东高考)已知双曲线E:

-=1(a>0,b>0),若矩形ABCD的四个顶点在E上,AB,CD的中点为E的两个焦点,且2|AB|=3|BC|,则E的离心率是________.

(特殊值法)利用双曲线的性质,设特殊值求解.

如图,由题意知|AB|=,|BC|=2c,

又2|AB|=3|BC|,∴设|AB|=6,|BC|=4,则|AF1|=3,|F1F2|=4,

∴|AF2|=5.由双曲线的定义可知,a=1,c=2,∴e==2.故填2.

(直接法)利用双曲线的性质,建立关于a,b,c的等式求解.

如图,由题意知|AB|=,|BC|=2C.

又2|AB|=3|BC|,

∴2×

=3×

2c,即2b2=3ac,

∴2(c2-a2)=3ac,两边同除以a2并整理得2e2-3e-2=0,解得e=2(负值舍去).

(2014·

安徽高考)数列{an}是等差数列,若a1+1,a3+3,a5+5构成公比为q的等比数列,则q=________.

(特殊值法)由题意知a1,a3,a5成等差数列,a1+1,a3+3,a5+5成等比数列,所以观察可设a1=5,a3=3,a5=1,所以q=1.故填1.

(直接法)因为数列{an}是等差数列,所以可设a1=t-d,a3=t,a5=t+d,故由已知得(t+3)2=(t-d+1)(t+d+5),得d2+4d+4=0,即d=-2,所以a3+3=a1+1,即q=1.

三、数形结合法

根据题目条件,画出符合题意的图形,以形助数,通过对图形的直观分析、判断,往往可以快速简捷地得出正确的结果,它既是方法,也是技巧,更是基本的数学思想.

【例3】 (2016·

全国卷Ⅲ)已知直线l:

mx+y+3m-=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点.若|AB|=2,则|CD|=________.

【答案】4

【解析】由直线l:

mx+y+3m-=0知其过定点(-3,),圆心O到直线l的距离为d=.

由|AB|=2得2+()2=12,

解得m=-.

又直线l的斜率为-m=,

所以直线l的倾斜角α=.

画出符合题意的图形如图所示,过点C作CE⊥BD,则∠DCE=.在Rt△CDE中,可得|CD|==2×

=4.

全国卷Ⅰ)若x,y满足约束条件则z=3x+y的最大值为________.

【解析】画出可行域(如图所示).

∵z=3x+y,

∴y=-3x+z.

∴直线y=-3x+z在y轴上截距最大时,即直线过点B时,z取得最大值.

由解得即B(1,1),

∴zmax=3×

1+1=4.

全国卷Ⅱ)已知偶函数f(x)在[0,+∞)单调递减,f

(2)=0.若f(x-1)>

0,则x的取值范围是________.

(-1,3)

【解析】∵f(x)是偶函数,∴图象关于y轴对称.又f

(2)=0,且f(x)在[0,+∞)上单调递减,则f(x)的大致图象如图所示,由f(x-1)>

0,得-2<

x-1<

2,即-1<

3.

四、等价转化法

通过“化复杂为简单,化陌生为熟悉”将问题等价转化为便于解决的问题,从而得到正确的结果.

【例4】 (2016·

全国卷Ⅰ)设等比数列{an}满足a1+a3=10,a2+a4=5,则a1a2…an的最大值为________.

【答案】64

【解析】设等比数列{an}的公比为q,则由a1+a3=10,a2+a4=q(a1+a3)=5,知q=.又a1+a1q2=10,∴a1=8.

故a1a2…an=aq1+2+…+(n-1)=23n·

=23n-+=2-+n.

记t=-+=-(n2-7n)=-2+,

结合n∈N*可知n=3或4时,t有最大值6.

又y=2t为增函数,从而a1a2…an的最大值为26=64.

1.(2016·

天津高考)已知f(x)是定义在R上的偶函数,且在区间(-∞,0)上单调递增.若实数a满足f(2|a-1|)>f(-),则a的取值范围是________.

【解析】∵f(x)是偶函数,且在(-∞,0)上单调递增,

∴f(x)在(0,+∞)上单调递减,f(-)=f(),

∴f(2|a-1|)>f(),∴2|a-1|<=2,

∴|a-1|<,即-<a-1<,即<a<.

2.(2015·

全国卷Ⅰ)若x,y满足约束条件则的最大值为________.

【答案】3

【解析】画出可行域如图阴影部分所示,

∵表示过点(x,y)与原点(0,0)的直线的斜率,

∴点(x,y)在点A处时最大.

由得

∴A(1,3).

∴的最大值为3.

五、构造法

根据题设条件与结论的特殊性,构造出一些新的数学形式,并借助它来认识和解决问题.

浙江高考)设数列{an}的前n项和为Sn.若S2=4,an+1=2Sn+1,n∈N

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 解决方案 > 其它

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1