结构动力学实验分析Word格式文档下载.docx

上传人:b****5 文档编号:17645542 上传时间:2022-12-07 格式:DOCX 页数:14 大小:122.66KB
下载 相关 举报
结构动力学实验分析Word格式文档下载.docx_第1页
第1页 / 共14页
结构动力学实验分析Word格式文档下载.docx_第2页
第2页 / 共14页
结构动力学实验分析Word格式文档下载.docx_第3页
第3页 / 共14页
结构动力学实验分析Word格式文档下载.docx_第4页
第4页 / 共14页
结构动力学实验分析Word格式文档下载.docx_第5页
第5页 / 共14页
点击查看更多>>
下载资源
资源描述

结构动力学实验分析Word格式文档下载.docx

《结构动力学实验分析Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《结构动力学实验分析Word格式文档下载.docx(14页珍藏版)》请在冰豆网上搜索。

结构动力学实验分析Word格式文档下载.docx

(1)信号发生器:

用来发生正弦信号,其频率和电压幅值可调。

(2)功率放大器:

以后自信号发生器的电压信号进行功率放大输出,用以推动振动台工作。

(3)电磁式振动台:

振动台的台面能够依照信号发生器输出的信号的频率和幅值振动。

(4)加速度传感器:

将被测系统的机械振动量(加速度)转换成电量。

(5)速度传感器:

将被测系统的机械振动量(速度)转换成电量。

(6)位移传感器:

将被测系统的机械振动量(位移)转换成电量。

(7)电荷放大器:

将加速度传感器输出的较小的电荷信号放大成可供检测的电压信号。

(8)测振放大器:

将速度型测振传感器输出的较小的电流信号放大成可供检测的电压信号。

(9)位移放大器:

将位移型测振传感器输出的较小的电流信号放大成可供检测的电压信号。

(10)数据搜集与分析系统:

记录和分析结构振动的各个参数。

四、实验步骤

1、按图所示连接实验仪器设备,并认真检查确认无误。

2、依此打开信号发生器、功率放大器,预热5分钟。

然后打开各放大器、数据搜集与分析系统。

3、将信号发生器置于正弦信号输出,输出频率为10Hz。

4、缓慢调剂信号发生器的电压,使振动台产生振动,在数据搜集与分析系统中的示波器上观看到一个较稳固的正弦波形。

5、记录各仪器的指示值。

6、依照各仪器的标定系数,确信振动台的振动(加速度、速度、位移)幅值。

7、改变振动频率(10-100Hz),每隔10Hz,重复4、五、6项的内容。

8、将各仪器设备的输出旋扭恢复到零,依此关闭信号发生器、功率放大器、各个传感器放大器的开关,并关闭数据搜集与分析系统。

整理好实验现场。

五、整理实验报告

表1-1结构振动大体参数测量

振动频率f=Hz

仪器读数

标定系数

实际幅值

加速度

速度

位移

实验二单自由度系统自由振动实验

一、记录小阻尼情形下衰减振动的时刻----位移曲线,了解阻尼对自由振动的阻碍。

二、测量并计算单自由度系统的固有周期、固有频率、对数递减率δ和阻尼比ξ。

单自由度系统在小阻尼下的自由振动是衰减振动,位移随时刻的转变规律为:

,时刻----位移曲线如以下图所示:

图2-1自由振动衰减曲线

利用该曲线能够读出自由振动的固有周期T,进而可计算出自由振动的固有频率f。

利用该曲线还能够读出自由振动的两相临幅值Ai和Ai+1,由此可计算出对数递减率δ:

由对数递减率δ可得阻尼比

为了幸免偶然因素产生的误差,能够量测相隔n个周期的两个幅值,一样能够求得单自由度系统自由振动的固有周期、固有频率、对数递减率和阻尼比。

而且实验精度会更高。

单自由度系统(质量块+弹性支撑杆)。

见图2-2。

图2-2单自由度系统自由振动实验框图

(1)力锤:

用来发生激振信号。

(2)加速度传感器:

(3)电荷放大器:

(4)数据搜集与分析系统:

一、按图所示连接实验仪器设备,并认真检查确认无误。

二、依此打开各放大器及数据搜集与分析系统。

4、使劲锤敲击质量块,使其产生自由衰减振动。

5、用数据搜集与处置系统记录自由衰减振动时刻历程曲线并打印。

6、依照自由衰减振动时刻历程曲线确信和计算单自由度系统自由振动的固有周期、固有频率、对数递减率和阻尼比。

7、将各仪器设备的输出旋扭恢复到零,依此关闭电荷放大器的开关,关闭数据搜集与分析系统。

1、给出自由衰减振动时刻历程曲线。

2、依照自由衰减振动时刻历程曲线计算单自由度系统自由振动的固有周期、固有频率、对数递减率和阻尼比。

表2-1单自由度系统自由振动实验数据与计算结果

T

f

Ai

Ai+1(m)

δ

ζ

实验三单自由度系统受迫振动实验

一、测绘受迫振动的幅频特性曲线,了解干扰力频率对振幅的阻碍。

二、把握通过受迫振动测试系统固有频率和阻尼的方式。

单自由度有阻尼系统在简谐力

作用下受迫振动的运动微分方程为

其中,

为阻尼比。

稳态受迫振动的解为

式中

为频率比。

称为考虑阻尼时动力放大系数,它为动力位移幅值与静力位移幅值的比值。

上式所确信的

曲线称为幅频曲线。

单自由度阻尼系统。

见图3-1。

图3-1单自由度系统受迫振动实验框图

(5)电荷放大器:

(6)数据搜集与分析系统:

然后打开各放大器及数据搜集与分析系统。

3、将信号发生器置于正弦信号输出,输出频率为1Hz。

6、依照各仪器的标定系数,确信质量块振动幅值。

7、改变振动频率(1-20Hz),每隔1Hz,重复4、五、6项的内容。

一、幅频特性曲线实验数据记录

激振频率(Hz)

振动幅值(mm)

二、作出单自由度系统受迫振动幅频曲线。

并依此确信系统的自振频率。

3、依照半功率法确信单自由度系统的阻尼比。

实验四多自由度系统动力特性实验

一、了解多自由度系统动力特性。

二、把握通过共振法测试多自由度系统固有频率和振型的方式。

3、观看各阶振型节点的个数及位置。

多自由度系统振动的运动微分方程为

上式的通解能够表示为各个特解之和,设其中一组特解的形式为

由以上各式得

对自由振动,有

由上式可求得各阶主频率。

然后代入前式可进一步解出相应的振型。

用共振法可较方便地测试出多自由度系统的各阶主频率及振型。

一、实验对象:

多自由度系统(三自由度系统)。

二、实验系统框图:

见图4-1。

图4-1多自由度系统振动实验框图

二、依此打开信号发生器、功率放大器,预热5分钟。

3、将信号发生器置于正弦信号输出,缓慢调剂信号发生器的电压,使振动台产生振动,在数据搜集与分析系统中的示波器上观看到一个较稳固的正弦波形。

4、调剂信号发生器输出的频率,使多自由度系统在第一阶主频率处产生共振,记录现在的频率值,然后依照各仪器的标定系数,确信对应的振型。

5、调剂信号发生器输出的频率,使多自由度系统在第二阶主频率处产生共振,记录现在的频率值,然后依照各仪器的标定系数,确信对应的振型。

6、调剂信号发生器输出的频率,使多自由度系统在第三阶主频率处产生共振,记录现在的频率值,然后依照各仪器的标定系数,确信对应的振型。

7、将各仪器设备的输出旋扭恢复到零,依此关闭信号发生器、功率放大器、各个传感器放大器的开关,并关闭数据搜集与分析系统。

1、记录多自由度系统的各阶主频率值。

阶数

1

2

3

主频率值(Hz)

二、作出多自由度系统前三阶振型图。

实验五悬臂梁实验模态分析实验

一、了解实验模态分析的大体原理和方式。

二、熟悉瞬态鼓励法模态分析的进程,把握传递函数的测量方式。

3、采纳瞬态法进行悬臂梁实验模态分析,测得前三阶模态参数。

假设系统的鼓励力为F(t),响应为y(t),F(ω)和Y(ω)为它们的傅氏变换,那么

假定在i个自由度上作用一个激振力,它的频率为ω,幅值为F,现在多自由度系统运动微分方程为

多自由度系统第l个自由度上的响应为

响应的幅值与激振力的幅值之比称为频率响应函数。

若是把结构上n个自由度上所有任意两点的频率响应函数组成矩阵,有

式中,

矩阵的任一行或任一列包括了模态的全数信息,测试时只要测试一行或一列即可。

悬臂梁。

见图5-1。

图5-1悬臂梁模态分析实验框图

用来产生瞬态激振力。

二、依此打开打开放大器及数据搜集与分析系统。

3、固定激振点,在此点作激振,然后别离测试各测试的响应。

4、固定测试点,别离在各激振点激振,然后别离记录固定测试点的响应。

五、将各仪器设备的输出旋扭恢复到零,依此关闭传感器放大器的开关,并关闭数据搜集与分析系统。

一、给出用固定激振点的测试方式得出的悬臂梁的前三阶振模态。

二、给出用固定测试点的测试方式得出的悬臂梁的前三阶振模态。

实验六损伤结构动力特性实验

一、了解损伤结构动力特性的方式。

二、把握采纳共振法测试损伤结构动力特性的方式。

3、比较损伤结构与完好结构动力特性,了解转变规律。

结构动力系统的操纵方程为

其中矩阵[M],[C],[K]别离表示离散的质量、阻尼和刚度散布,

别离表示加速度向量、速度向量和位移向量,

是外部作使劲函数向量。

方程的齐次解确实是特点值和特点向量。

如略去阻尼项,有

其中

是第i阶特点值,

是相应的特点向量。

由以上各式可得物理参数[M]、[K]与动力特性

之间的关系

显然

是系统[M],[K]的函数。

若是结构中存在损伤,那么结构特定部份的质量和刚度损失而引发的[M],[K]的任何转变,都将在自振频率和振型的测量中有所反映。

损伤前后位移模态差可表示为

其中,YD和YI别离为有损伤及无损伤结构的位移模态。

E能够更清楚地反映损伤对结构模态的阻碍。

完整悬臂梁与有损伤的悬臂梁。

见图6-1。

图6-1损伤结构动力特性实验框图

4、调剂信号发生器输出的频率,别离使有、无损伤悬臂梁在第一阶主频率处产生共振,记录现在的频率值,然后依照各仪器的标定系数,确信对应的振型。

5、调剂信号发生器输出的频率,别离使有、无损伤悬臂梁在第二阶主频率处产生共振,记录现在的频率值,然后依照各仪器的标定系数,确信对应的振型。

6、调剂信号发生器输出的频率,别离使有、无损伤悬臂梁在第三阶主频率处产生共振,记录现在的频率值,然后依照各仪器的标定系数,确信对应的振型。

1、记录完整悬臂梁与损伤悬臂梁的前三阶主频率值,并计算其差值。

2、作出完整悬臂梁与损伤悬臂梁的前三阶振型图及位移模态差。

1、减振与隔振实验;

2、传感器特性测量实验;

3、数字信号分析实验;

4、随机振动实验。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高中教育 > 理化生

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1