均匀量化与非均匀量化的比较附有详细全参数Word文档格式.docx
《均匀量化与非均匀量化的比较附有详细全参数Word文档格式.docx》由会员分享,可在线阅读,更多相关《均匀量化与非均匀量化的比较附有详细全参数Word文档格式.docx(14页珍藏版)》请在冰豆网上搜索。
均匀量化;
非均匀量化
ThequantitativeanalysisofPCMsystem
ComputerandInformationEngineeringCollegeCommunicationsEngineering.ShenZhe200911103657
DirectedbyYuZongZuolecturer
AbstractThispaper,fromtheuniformquantitativeandnon-uniformquantitativedifferentanglesonPCMsystemdesignandsimulation,detailedanalysisofthespeechsignalanddigitalsimulationinspeechsignalconversionbetweenevenquantificationandinfluenceofsystemofuniformquantitativerole.
KeywordsPCM;
Evenquantitative;
Non-uniformquantitative
1、引言
随着电子技术和计算机技术的发展,仿真技术得到了广泛的应用。
基于信号的用于通信系统的动态仿真软件SystemView具有强大的功能,可以满足从底层到高层不同层次的设计、分析使用,并且提供了嵌入式的模块分析方法,形成多层系统,使系统设计更加简洁明了,便于完成复杂系统的设计。
SystemView具有良好的交互界面,通过分析窗口和示波器模拟等方法,提供了一个可视的仿真过程,不仅在工程上得到应用,在教学领域也得到认可,尤其在信号分析、通信系统等领域。
其可以实现复杂的模拟、数字及数模混合电路及各种速率系统,并提供了容丰富的基本库和专业库。
本文主要阐述了如何利用SystemView实现脉冲编码调制(PCM)。
系统的实现通过模块分层实现,模块主要由PCM编码模块、PCM译码模块、及逻辑时钟控制信号构成。
通过仿真设计电路,分析电路仿真结果,为最终硬件实现提供理论依据。
2.SystemView软件
2.1Systemview简介
SystemView是美国ELANIX公司推出的,基于Windows环境下运行的用于系统仿真分析的可视化软件工具,它使用功能模块(Token)去描述程序,无需与复杂的程序语言打交道,不用写一句代码即可完成各种系统的设计与仿真,快速地建立和修改系统、访问与调整参数,方便地加入注释。
2.2Systemview软件特点
SystemView的库资源十分丰富,包括含若干图标的基本库(MainLibrary)及专业库(OptionalLibrary),基本库中包括多种信号源、接收器、加法器、乘法器,各种函数运算器等;
专业库有通讯(Communication)、逻辑(Logic)、数字信号处理(DSP)、射频/模拟(RF/Analog)等;
它们特别适合于现代通信系统的设计、仿真和方案论证,尤其适合于无线、无绳、寻呼机、调制解调器、卫星通讯等通信系统;
并可进行各种系统时域和频域分析、谱分析,及对各种逻辑电路、射频/模拟电路(混合器、放大器、RLC电路、运放电路等)进行理论分析和失真分析。
SystemView能自动执行系统连接检查,给出连接错误信息或尚悬空的待连接端信息,通知用户连接出错并通过显示指出出错的图标。
这个特点对用户系统的诊断是十分有效的。
SystemView的另一重要特点是它可以从各种不同角度、以不同方式,按要求设计多种滤波器,并可自动完成滤波器各指标——如幅频特性(伯特图)、传递函数、根轨迹图等之间的转换。
在系统设计和仿真分析方面,SystemView还提供了一个真实而灵活的窗口用以检查、分析系统波形。
在窗口,可以通过鼠标方便地控制部数据的图形放大、缩小、滚动等。
另外,分析窗中还带有一个功能强大的“接收计算器”,可以完成对仿真运行结果的各种运算、谱分析、滤波。
SystemView还具有与外部文件的接口,可直接获得并处理输入/输出数据。
提供了与编程语言VC++或仿真工具Matlab的接口,可以很方便的调用其函数。
还具备与硬件设计的接口:
与Xilinx公司的软件CoreGenerator配套,可以将SystemView系统中的部分器件生成下载FPGA芯片所需的数据文件;
另外,SystemView还有与DSP芯片设计的接口,可以将其DSP库中的部分器件生成DSP芯片编程的C语言源代码。
3实验目的:
1.1熟悉和掌握systemview仿真软件;
1.2设计和仿真出在均匀量化以及非均匀量化下的PCM系统;
1.3分析和对比在均匀量化与非均匀量化下的输出波形有何区别;
1.4在老师的指导下,要求独立完成课程设计的全部容,并按要求编写课程设计报告,能够正确阐述和分析实验结果。
4工作原理
4.1PCM系统介绍
PCM即脉冲编码调制,就是把一个时间连续,取值连续的模拟语音信号变换成时间离散,取值离散的数字语音信号后在信道中传输。
PCM的实现主要包括三个步骤完成:
抽样、量化、编码。
分别完成时间上离散、幅度上离散、及量化信号的二进制表示。
2.2电路组成模块
PCM系统非均匀量化电路的组成原理框图如图1所示:
图1PCM系统非均匀量化原理框图
PCM系统均匀量化电路的组成原理框图如图2所示:
图2PCM系统均匀量化原理框图
4.3PCM系统的工作原理及过程
PCM系统总电路仿真图如图3所示:
图3PCM系统总电路图
4.3.1PCM系统输入信号
在本系统输入信号采用的是三个信号经过混频器叠加的信号作为系统的输入信号,为了方便说明问题,采用了大信号与小信号两组信号进行实验,图4、图5为输入信号的波形。
图4小信号输入波形图
图5大信号输入波形图
4.3.2PCM系统抽样
抽样,就是对模拟信号进行周期性扫描,把时间上连续的信号变成时间上离散的信号。
该模拟信号经过抽样后还应当包含原信号中所有信息,也就是说能无失真的恢复原模拟信号。
它的抽样速率的下限是由抽样定理确定的。
抽样定理指出,对于一个频带限制在零到fh的低通模拟信号抽样时,若最小抽样速率不低于奶奎斯特抽样速率2fh,则能够无失真的输出原模拟信号。
4.3.3PCM系统量化
从数学上来看,量化就是把一个连续幅度值的无限数集合映射成一个离散幅度值的有限数集合。
如图6所示,量化器Q输出L个量化值
,k=1,2,3,…,L。
常称为重建电平或量化电平,当量化器输入信号幅度
落在
与
之间时,量化器的输出电平为
。
此时,这个量化过程就可以表达为:
这里
称为分层电平或判决阈值。
通常
称为量化间隔。
下图为模拟信号的量化图:
图6模拟信号的量化
模拟信号的量化分为均匀量化和非均匀量化。
均匀量化是指把输入信号的取值域等间隔分割的量化称为均匀量化。
利用A/D转换器就可实现均匀量化。
完成A/D转换后利用带使能端的8路数据选择器的数据并/串转换,用三个信号为选择控制端,在这里控制轮流输出并行数据为串行数据,通过数据选择器还可以实现码速转换功能,这样就能接收量化波形。
图7、图8为大小信号时均匀量化的量化波形图:
图7小信号的均匀量化波形图
图8大信号的均匀量化波形图
非均匀量化是根据信号的不同区间来确定量化间隔的。
对于信号取值小的区间,其量化间隔
也小;
反之,量化间隔就大。
它与均匀量化相比,有两个突出的优点。
首先,当输入量化器的信号具有非均匀分布的概率密度(实际中常常是这样)时,非均匀量化器的输出端可以得到较高的平均信号量化噪声功率比;
其次,非均匀量化时,量化噪声功率的均方根值基本上与信号抽样值成比例。
实际中,非均匀量化的实际方法通常是将抽样值通过压缩再进行均匀量化。
通常使用的压缩器中,大多采用对数式压缩。
广泛采用的两种对数压缩律是
压缩律和A压缩律。
美用
压缩律,我国和欧洲各国均采用A压缩律,因此,PCM编码方式采用的也是A压缩律。
非均匀量化在大小信号时的量化波形图如图10、图11所示:
图10小信号非均匀量化量化波形
图11大信号非均匀量化量化波形
4.3.4PCM系统编码
所谓编码就是把量化后的信号变换成代码,其相反的过程称为译码。
当然,这里的编码和译码与差错控制编码和译码是完全不同的,前者是属于信源编码的畴。
在现有的编码方法中,若按编码的速度来分,大致可分为两大类:
低速编码和高速编码。
通信中一般都采用第二类。
编码器的种类大体上可以归结为三类:
逐次比较型、折叠级联型、混合型。
在A/D转换器中,将量化信号编码用8bit表示,其中第一位为极性表示,这样产生了64kbit/s的语音压缩编码。
4.3.5PCM系统译码
在均匀量化的过程中,将所编码的信号用D/A转换器译码出来,出来的信号通过一个3阶的巴特沃斯低通滤波器,因为采样脉冲不可能是理想冲激函数会引入孔径失真,量化时也会带来量化噪声,及信号再生时引入的定时抖动失真,需要对再生信号进行幅度及相位的补偿,同时滤除高频分量,在这里使用与编码模块中相同的低通滤波器。
采用均匀量化后PCM系统还原出来的大小信号为图12、图13所示:
图12小信号均匀量化后还原波形
图13大信号均匀量化后还原波形
采用非均匀量化将所编码的信号用D/A转换器译码出来,在通过通过巴特沃斯低通滤波器前需要将信号采用13线A律瞬时扩。
采用非均匀量化后PCM系统还原出来的大小信号为图14、图15所示:
图14小信号非均匀量化后还原波形
图15大信号非均匀量化后还原波形
5均匀量化与非均匀量化分析比较
5.1大信号情况下均匀量化与非均匀量化的比较
PCM系统在大信号时均匀量化与非均匀量化还原出来的信号同输入信号比较,图16、图17即为比较图:
图16大信号均匀量化后还原波形与输入信号比较
图17大信号非均匀量化后还原波形与输入信号比较
根据图16大信号均匀量化后还原波形与输入信号比较图以及图17大信号非均匀量化后还原波形与输入信号比较发现在大信号时,采用均匀量化与非均匀量化所还原出来的信号与输入信号并无很大的区别,只是稍稍有点延迟。
5.2小信号情况下均匀量化与非均匀量化的比较
PCM系统在小信号时均匀量化与非均匀量化还原出来的信号同输入信号比较,图18、图19即为比较图:
图18小信号均匀量化后还原波形与输入信号比较
图19小信号非均匀量化后还原波形与输入信号比较
由图可以明显看出,在小信号时非均匀量化后还原波形与输入信号几乎无区别,但是在均匀量化后还原波形与输入波形相差很大。
5.3分析均匀量化与非均匀量化带来的区别
由于在均匀量化中,无论抽样值大小如何,量化噪声的均方根值都固定不变。
因此,当信号
较小时,则信号量化噪声功率比也就很小,这样,对于弱信号时的量化信噪比就难以达到给定的要求。
通常,把满足信噪比要求的输入信号取值围定义为动态围,可见,均匀量化时的信号动态围将受到较大的限制。
当输入量化器的信号具有非均匀分布的概率密度(实际中常常是这样)时,非均匀量化器的输出端可以得到较高的平均信号量化噪声功率比。
非均匀量化时,量化噪声功率的均方根值基本上与信号抽样值成比例。
因此量化噪声对大、小信号的影响大致相同,即改善了小信号时的量化信噪比。
6元器件参数
系统所需元器件参数如表2所示:
符号
名称
参数设置
Sinusoid
大信号Amp=1v,Freq=1e+3Hz,Phase=0deg,
Output0=Sinet4,Output1=Cosine
小信号Amp=500e-6v,Freq=1e+3Hz,
Phase=0deg,
1
大信号Amp=1v,Freq=3e+3Hz,Phase=0deg,
小信号Amp=500e-6v,Freq=3e+3Hz,
Phase=0deg,
2
大信号Amp=1v,Freq=500Hz,Phase=0deg,
小信号Amp=500e-6v,Freq=500Hz,
3
Adder
Inputsfrom012,Outputsto4
41022
Operator:
LinearSysButterworthLowpassIIR
3Poles,Fc=3.4e+3Hz,QuantBits=None
InitCndtn=Transient,DSPModeDisabled
615
Logic:
ADC
Two'
sComplement,GateDelay=0sec,Threshold=500e-3v,TrueOutput=1v,FalseOutput=0v,No.Bits=8,MinInput=-2.5v,MaxInput=2.5v,RiseTime=0sec,Analog=t21Output0,
Clock=t1Output0
716
DAC
sComplement,GateDelay=0sec,Threshold=500e-3No.Bits=8,MinOutput=-2.5v,
MaxOutput=2.5v,
D-0=t13Output0,D-1=t13Output1,D-2=t13Output2,D-3=t13Output3,D-4=t13Output4
5
Comm:
Compander
A-Law,MaxInput=±
2.5
9
DeCompand
817
Mux-D-8
GateDelay=0sec,Threshold=500.e-3v
TrueOutput=1v,FalseOutput=0
1118
Source:
PulseTrain
Amp=1v,Freq=10e+3Hz
PulseW=20.e-6sec,Offset=0v,Phase=0deg
1219
Amp=1v,Freq=20e+3Hz
1421
1320
Amp=1v,Freq=30e+3Hz
232425
2627
graphic
表2元器件参数
7课程设计心得
在这次课程设计当中遇到了许许多多的困难:
在我以前的学习生涯当中,一直都是老师先给我们讲解,然后再布置作业让我们去练习所学的东西,而这次确实真正意义上的自主学习,老师直接给我们资料,让我们自己边看边练习,我觉得这样的学习极大的提升了我们自主学习的能力,领会了学习的真谛;
在设计PCM系统在量化后如何取得其量化波形图时,突然卡壳,最后自己搜集资料,仔细研究课本最后在模数转换器上加了个数据8路选择器,使其实现并串转换功能最后得到了量化波形图;
在分析均匀量化与非均匀量化还原后的波形图时发现两个波形图与输入波形图都很接近,突然想到在小信号时非均匀量化才会体现出它的优点,但多小是小信号呢,在测试了多组数据之后终于试验出来了。
通过这次试验在克服各种困难的过程中,在摸索该如何设计电路使之实现所需功能的过程中,特别有趣,培养了我的设计思维,增加了实际操作能力。
在让我体会到了设计电路的艰辛的同时,更让我体会到成功的喜悦和快乐。
最后,衷心感谢俞宗佐老师在这次实验中给予的帮助。
参考文献
[1]曹丽娜樊昌信国防工业通信原理(第六版)
[2]阎石主编.数字电子技术基础.高等教育