数值模拟报告Word文档格式.docx

上传人:b****6 文档编号:17441397 上传时间:2022-12-01 格式:DOCX 页数:16 大小:59.10KB
下载 相关 举报
数值模拟报告Word文档格式.docx_第1页
第1页 / 共16页
数值模拟报告Word文档格式.docx_第2页
第2页 / 共16页
数值模拟报告Word文档格式.docx_第3页
第3页 / 共16页
数值模拟报告Word文档格式.docx_第4页
第4页 / 共16页
数值模拟报告Word文档格式.docx_第5页
第5页 / 共16页
点击查看更多>>
下载资源
资源描述

数值模拟报告Word文档格式.docx

《数值模拟报告Word文档格式.docx》由会员分享,可在线阅读,更多相关《数值模拟报告Word文档格式.docx(16页珍藏版)》请在冰豆网上搜索。

数值模拟报告Word文档格式.docx

一般而言,岩、土体处于三向受力状态,其破坏模式往往表现为压-剪破坏和拉伸破坏。

要分析和预测岩、土体在外力作用下的变形、破坏,就需要对其变形、破坏情况进行较为直观地再现。

岩土工程数值模拟正是从岩、土体的受力状态出发,来分析和预测岩、土体破坏情况的一种手段。

其基本原理是以典型试样的物理试验(室内试验或现场试验)获得的强度来表征整个地质体的岩、土体强度,以边界条件替代地质体周围所受的约束条件,借由本构关系表达岩、土体在外力作用下的应力-应变特性,最终了解、预测岩、土体变形破坏情况。

它具有鲜明的时代特征,以计算机为实现平台,是信息化时代的产物。

通过与其它方法(如人工智能、人工生命科学、随机模拟、模糊数学、灰色理论以及分形理论等)交叉共生、相互耦合嫁接,以获得更广阔的发展空间。

从广义上来说,岩、土体的室内试验和原位试验也是一种模拟手段,本文称之为物理模拟。

之所以如此称谓,是因为它们也是为较真实地近似再现岩、土体在其所赋存的环境中所处的受力状态所采用的一种手段。

从这个意义上来说,它与数值模拟的基本原理是相同的,因此,可以将数值模拟称为虚拟实验室模拟。

所不同的是,数值模拟除可以进行常规尺寸模型的模拟外,还可以进行宏观和细观两个层面尺寸模型的模拟,而其输入的参数则需通过物理模拟来提供。

因此,数值模拟是与物理模拟并行发展、相互补充和相互验证的试验系统。

相较于其它方法,数值模拟具有可重复和操作性强,费用低廉,不受模型尺寸控制,可视化程度高的优点,能有效延伸和扩展分析人员的认知范围,为分析人员洞悉岩、土体内部的破坏机理提供了强有力的可视化手段。

当然作为一种分析方法,它也有自身的缺点,主要是易受制于岩、土体结构的描述和模型概化的准确性及合理性;

受制于岩、土体物理试验模拟结果的准确性;

受制于岩、土体本构关系与实际岩、土体力学响应特性拟合程度的高低。

4.数值分析方法中存在的问题

到目前为止,研究计算工程的文章很多,但真正用于实际工程的数值分析方法(例如有限元法等)却较少。

部分原因在于有较多不成功应用的实例。

为什么会有这种情况,原因是多方面的,下面列出几条仅供参考:

(1)对岩土工程数值分析方法缺乏系统的知识和深入的理解,出现问题时不知道在什么情况下属于理论问题或数学模型问题;

在什么情况下是属于计算方法问题或本构模型问题;

在什么情况下是参数的确定问题或计算本身的问题等。

(2)各种本构模型固有的局限性。

具有多相性土的物理力学性质太复杂,难以准确地用数学模型和本构模型描述。

例如邓肯一张模型不能反映剪胀性,不能反映压缩与剪切的交叉影响;

模型只能考虑硬化,不能反映软化;

模型不能反映各向异性。

剑桥模型也仅能考虑硬化而不能反映软化,不能反映土的剪切膨胀和各向异性,不能用于超固结土等。

(3)现有的试验手段和设备不能提供适当、合理和精确的参数。

靠少数样本点所获得的参数难以准确地描述整个空间场地的物理力学性能;

土的参数因土样扰动难以高质量的获取,其精度很差。

有些模型要求较多的参数,但这些参数用常规的试验手段和设备难以获取等。

岩土工程中如何应用精确的数学模型和本构模型是一个值得注意的问题。

在一般结构分析中,因材料的力学性质简单、均匀,不确定性较小,一般采用较精确的数学模型会得到较精确的分析结果。

但就土这种材料而言,因其不确定性非常大,其情况发生了很大的变化。

众所周知,场地土性及其参数勘察结果的精度和准确性是很差的,由此导致既使采用了很精确的数学模型,但因输入参数的精度不能与之相匹配,其计算结果同样会很差。

采用精确的数学模型还会给人造成一种错觉,让人觉得其计算结果也一定会更好、更可靠。

这样可能使人们忽略了精确的数学公式也照样会有出错的可能性。

只有当输入参数的质量和精度很高,并能与数学模型的精度相匹配时,才有可能得到较为准确的计算结果。

5.结语

20世纪60年代以后,由于电子计算机的飞速发展使岩土工程数值分析方法得到不断发展和完善,并用于岩土工程实践。

虽然在工程实际使用中数值分析方法存在一些问题,但只要认清问题的实质,并采取措施去解决它,相信随着岩土工程数值分析方法的不断发展及其工程经验的不断积累,在工程实践中将会得到越来越多的应用,它必将成为岩土工程分析中的有力工具。

参考文献

[1]张森,言志信,段建.边坡开挖数值模拟及其稳定性评价研究[J].西部探矿工程.(3).

[2]汪军,刘海波.边坡稳定性的有限元数值模拟建模[J].华北科技学院学报.(0).

[3]陈印东,刘叔灼.基于强度折减法的边坡稳定性分析[J].科学技术与工程.(0).

[4]王浩.类土质路堑高边坡典型失稳机制与加固工程对策的数值模拟研究[D].铁道部科学研究院,2004.

[5]张超,杨春和.有限差分强度折减法求解边坡稳定性[J].土木工程与管理学报.(4).

[6]郑颖人,赵尚毅,宋雅坤.有限元强度折减法研究进展[J].后勤工程学院学报.(0).

[7]邹宝祥,李明,唐伟华.某大桥边坡稳定性FLAC3D数值模拟分析[J].山西建筑.(3).

[8]郭辉.山西晋城土质垂直高边坡稳定性计算及数值模拟研究[D].西安科技大学,2011.

[9]郭志柳,陈建东,吴鹏.填土物理力学性质对路堤边坡稳定性影响的数值模拟[J].江西理工大学学报.(9).

第二部分:

数值模拟技术FLAC3D上机报告

FLAC3D数值模拟上机题

计算模型分别如图1、2、3所示,边坡倾角分别为30°

、45°

、60°

,岩土体参数为:

密度ρ=2500kg/m3,弹性模量E=1×

108Pa,泊松比μ=,

抗拉强度σt=×

106Pa,内聚力C=×

104Pa,摩擦角φ=17°

试用FLAC3D软件建立单位厚度的计算模型,并进行网格剖分,参数赋值,设定合理的边界条件,利用FLAC3D软件分别计算不同坡角情况下边坡的稳定性,并进行结果分析。

附换算公式:

1kN/m3=100kg/m3

剪切弹性模量:

=

体积弹性模量:

图1倾角为30°

的边坡(单位:

m)

计算命令流如下:

new

genzonebrickp0000p110000p2010p30040size50110

genzonebrickp040040p1100040p240140p3060p4100140&

p5160p6100060p7100160size30110

fixxrangex

fixy

fixzrangez

modelelas

propdensity2500bulk3e9shear1e9

setgravity00-10

solve

inixdisp0ydisp0zdisp0

inixvel0yvel0zvel0

modelmohr

propdensity2500bulkshearc42000fric17ten800000

solvefosfileassociated

计算结果如下:

图1-a,网格剖分图图1-b,速度矢量图

图1-c,速度等值线图图1-d,位移等值线图

最终计算边坡的稳定性系数为:

Fs=

分析:

30°

边坡稳定性系数采用的是FLAC3D内置的强度折减法求解,稳定性系数>

1,从稳定性系数系数可以判断该边坡处于安全状态。

坡面最大速度为s,随着深度的增加,竖向应力逐渐增大。

坡肩处出现下沉,最大值达到。

图2倾角为45°

genzonebrip0000p110000p2020p30040size50110

genzonebrip040040p1100040p240240p360060p4100240p560260p6100060&

p7100160size30110

propdensitybulkshearctens&

friction17dilation20

fixxyzrangez

fixy

setgravity=

plotaddaxered

plotcondis

;

定义循环终止条件

defcalfos

ait1=

k11=

k12=

loopwhile(k12-k11)>

ait1

fs=(k12+k11)/

refric=(atan((tan(17*pi/180))/fs))*180/pi

recoh=42000/fs

折减实现过程

command

inisxxsyyszzsxysxzsyz

inixvelyvelzvel

inixdisydiszdis

profricrefriccohrecoh

setmechratio1e-5

solvestep5000

printfs

end_command

aa=mech_ratio

ifaa<

1e-5then

k11=fs

else

k12=fs

end_if

end_loop

end

calfos

SAVE

图2-a,网格剖分图图2-b,速度矢量图

图2-c,速度等值线图图2-d,位移等值线图

45°

边坡稳定性系数采用的是FLAC3D自编的强度折减法求解,稳定性系数>

坡肩处出现下沉,最大值达到5,34m。

图3倾角为60°

genzonebrickp040040p1100040p240140p3060p4100140p5160&

p6100060p7100160size30110

attachfacerangez

图3-a,网格剖分图图3-b,速度矢量图

图3-c,速度等值线图图3-d,位移等值线图

60°

边坡稳定性系数采用的是FLAC3D内置的强度折减法求解,稳定性系数<

1,从稳定性系数系数可以判断该边坡处于不安全状态。

坡肩处出现下沉,最大值达到,故应采取措施以保证边坡安全。

图4边坡开挖算例分析

genzonebrickp0000p110000p2010p30040size100110

genzonebrickp040040p1100040p240140p350050p4100140p550150p6100050p7100150size6015

genzonebrickp053050p1100050p253150p363060p4100150p563160p6100060p7100160size4715

图4-a,网格剖分图图4-b,速度矢量图

图4-c,速度等值线图图4-d,位移等值线图

开挖后边坡稳定性系数采用的是FLAC3D内置的强度折减法求解,稳定性系数>

第三部分:

数值模拟技术研究应用实例分析

基于FLAC3D在不同土体参数条件下的边坡稳定性研究

摘要:

边坡稳定性的影响因素很多,最直接的是边坡岩土体的性质、地下水、边坡坡脚等。

对于人工填土的路堤边坡而言,主要是填土的物理参数。

本文介绍了数值模拟法的工程应用的历史及现状,数值模拟在边坡中的应用。

然后利用FLAC3D软件,采用控制变量法,在保持其他土体物理参数不变的情况下,分别依次改变弹性模量、泊松比、密度、凝聚力、内摩擦角,计算边坡的稳定性,观察边坡稳定性系数变化,以及各点位移量的变化,从而得出土体物理参数变化对路堤边坡稳定性的影响,为路堤边坡填土土类提供依据和建议。

关键词:

边坡、物理参数、FLAC3D

1研究背景

21世纪以来,中国处于快速发展的阶段,国内基础建设蓬勃发展。

随着水利工程、公路等基础设施建设的大力开展,尤其是我国西部大开发战略的实施,大量公路建设深入西部山区,严重地破坏了局部区域内地质环境的平衡,大量的工程活动对地质环境的改变日益加剧,导致了大量地质灾害的发生,所以边坡的稳定性研究显得越来越重要。

边坡稳定性评价一直是边坡工程的一项主要内容,也是边坡工程设计和施工的基础。

边坡稳定性计算理论和判别方法可靠与否,关系到工程的安全问题,一旦边坡失稳,不仅会给国家带来巨大的经济损失,而且会危及人民生命财产安全。

2国内外研究状态

目前边坡稳定性分析方法研究主要集中在与计算机技术、岩土力学、数学模型结合上,也产生和发展了一些新方法,其中三维稳定性分析是研究热点之一,以有限元法为代表的数值分析法以及各种不确定性分析方法发展迅速,而传统的极限平衡法主要以改进为主。

根据分析认为边坡稳定性分析研究在以后需要解决以下主要问题:

继续完善和发展现有理论和方法,扬长避短;

建立具有普遍意义的边坡失稳机理和稳定性评价方法;

统一评价标准,增加各方法之间的对比性;

建立多因素的综合评价方法;

建立反映边坡各个时段稳定状态的全过程评价方法;

建立符合边坡稳定分析的理论体系或组合理论体系;

重视人类活动动态,加强人类活动与边坡稳定的相互作用研究。

3FLAC3D模拟计算

基本模型

以下面的简单的模型为基础,计算不同物理参数下的稳定性系数,来进行本次研究,模型及形体参数见图1。

基本物理参数见表1。

图1基本模型及形体参数

表1基本模型的物理参数

土体物理参数参数

弹性模量E/MPa

泊松比μ

密度ρ/(g·

cm-3)

凝聚力C/kPa

内摩擦ψ/(°

)角

抗拉强度σt

/MPa

剪切弹性模量/MPa

体积弹性模量/MP

a

10

42

17

在FLAC3D中建立模型,并计算边坡稳定性

创建几何模型:

genzonebrickp0000p18000p2020p30020size40110

genzonebrick&

p040020p180020p240220p360040&

p480220p560240p680040p780240&

size20110

赋予材料模型属性

setgravity0,0,-10

propertybulk=8e9shear=5e9density=2500

施加边界约束

试算

solve

设置重力场

inixdis=0ydis=0zdis=0

inixvel=0yvel=0zvel=0

propertybulk=shear=friction=17

propertycohesion=tension=

fos计算

solvefosfileassociated

 

图2基本模型的稳定性系数和剪应变增量图

填土物理力学性质对路堤稳定性的影响分析

填土弹性模量对路堤稳定性的影响

在表1基本参数的情况下,改变路堤填土弹性模量E的大小,考虑弹性模量为10MPa、15MPa、20MPa、25MPa、30MPa等5种取值,采用FLAC3D软件分析路堤边坡安全系数Fs随弹性模量E的变化情况及其弹性模量E对路堤沉降的影响情况,计算得到的填土不同弹性模量E下路堤边坡的值Fs见下表2。

表2填土不同弹性模量E下路堤边坡的值Fs

弹性模量E/MPa

15

20

25

30

稳定性系数Fs

从表2可以看出安全系数为定值Fs=,即路堤填土的弹性模量E对路堤的稳定性几乎没有影响.

图3路堤表面在不同弹性模量E下的z方向位移情况

图3为路堤表面在不同弹性模量E下的z方向位移(即路堤表面沉降)情况,从中可以看出:

(1)同一弹性模量E下,路堤表面各点的沉降量由路堤中心向边缘逐渐减小,并不成线性变化。

(2)路堤表面距路堤边缘10m内沉降量随填土弹性模量E的增加而大幅增大。

10m范围外,路堤表面沉降量缓慢增加,距路堤边缘位置13m位置沉降量最大,即此处为路堤滑动面贯通位置。

图4路堤表面各点在不同弹性模量E下的z方向位移情况

从图4当中可以得出结论:

随着弹性模量的增大,各点沉降量逐渐增大,且增加速率也逐步增大。

填土泊松比对路堤稳定性的影响

在表1基本参数的情况下,改变路堤填土泊松比μ的大小,考虑泊松比为、、、、等5种取值,采用FLAC3D软件分析路堤边坡随泊松比μ的变化情况,计算得到填土不同泊松比μ下路堤边坡的Fs值见表3。

表3填土不同泊松比μ下路堤边坡的值Fs

泊松比

从表3可以看出安全系数为定值Fs=,即路堤填土的泊松比μ对路堤边坡的稳定性几乎没有影响.

图5为μ=下的路堤边坡剪应变增量及其位移图。

从中可以看出,边坡滑动位置贯穿于坡底和左半幅路基表面1/4处的位置,边坡的最大水平位移在坡底位置。

图5μ=下的路堤边坡剪应变增量及其位移图

图6和图7为在不同泊松比μ下路堤表面的z方向位移(即路堤表面沉降)情况,从中可以看出:

(1)同一泊松比下,路堤表面各点的沉降量由路堤中心向边缘逐渐减小,并不

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高中教育 > 英语

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1