高考物理二轮练习导学案第四章第1课时曲线运动运动的合成Word格式文档下载.docx
《高考物理二轮练习导学案第四章第1课时曲线运动运动的合成Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《高考物理二轮练习导学案第四章第1课时曲线运动运动的合成Word格式文档下载.docx(17页珍藏版)》请在冰豆网上搜索。
质点在某点的速度,沿曲线上该点的________方向、
(2)运动性质:
做曲线运动的物体,速度的________时刻改变,所以曲线运动一定是________运动,即必然具有__________、
2、曲线运动的条件
(1)从动力学角度看:
物体所受的__________方向跟它的速度方向不在同一条直线上、
(2)从运动学角度看:
物体的________方向跟它的速度方向不在同一条直线上、
3、质点做曲线运动的轨迹在________________________之间,且弯向______的一侧、如图3所示、
图3
:
变速运动一定是曲线运动吗?
曲线运动一定是变速运动吗?
曲线运动一定不是匀变速运动吗?
请举例说明、
【二】运动的合成与分解
1、设空中的雨滴从静止开始下落,遇到水平方向吹来的风,以下说法中正确的选项是()
A、风速越大,雨滴下落的时间越长
B、雨滴下落时间与风速无关
C、风速越大,雨滴着地时的速度越大
D、雨滴着地速度与风速无关
2、降落伞下落一定时间后的运动是匀速的、没有风的时候,跳伞员着地的速度是5m/s.现在有风,风使他以4m/s的速度沿水平方向向东移动,问跳伞员将以多大的速度着地?
这个速度的方向怎样?
1、基本概念
2、分解原那么
根据运动的____________进行分解,也可采用____________的方法、
3、遵循的规律
位移、速度、加速度都是矢量,故它们的合成与分解都遵循________________、
4、合运动与分运动的关系
等时性
各分运动经历的时间与合运动经历的时间______
独立性
一个物体同时参与几个分运动,各分运动________进行,不受其他分运动的影响
等效性
各分运动的规律叠加起来与合运动的规律有______的效果
名师点拨在进行运动的合成时,可以利用三角形定那么,如图4所示,v1、v2的合速度为v.
图4
两个直线运动的合运动一定是直线运动吗?
考点一物体做曲线运动的条件及轨迹分析
考点解读
1、做曲线运动的物体速度方向始终沿轨迹的切线方向,速度时刻在变化,加速度一定不为零,故曲线运动一定是变速运动、当加速度与初速度不在一条直线上,假设加速度恒定,物体做匀变速曲线运动,假设加速度变化,物体做非匀变速曲线运动、
2、做曲线运动的物体,所受合外力一定指向曲线的凹侧,曲线运动的轨迹不会出现急折,只能平滑变化,轨迹总在力与速度的夹角中,假设物体的运动轨迹,可判断出合外力的大致方向;
假设合外力方向和速度方向,可知道物体运动轨迹的大致情况、
3、做曲线运动的物体其合外力可沿切线方向与垂直切线方向分解,其中沿切线方向的分力只改变速度的大小,而垂直切线方向的分力只改变速度的方向、
典例剖析
例1一质点以水平向右的恒定速度通过P点时受到一个恒力F的作
用,那么此后该质点的运动轨迹不可能是图5中的()
A、aB、b
C、cD、d
跟踪训练1如图6所示
图6
为质点做匀变速曲线运动轨迹的示意图,且质点运动到D点时速度方向与加速度方向恰好互相垂直,那么质点从A点运动到E点的过程中,以下说法中正确的选项是()
A、质点经过C点的速率比D点的大
B、质点经过A点时的加速度方向与速度方向的夹角小于90°
C、质点经过D点时的加速度比B点的大
D、质点从B到E的过程中加速度方向与速度方向的夹角先增大后减小
考点二合运动的性质和轨迹
1、力与运动的关系
物体运动的形式,按速度分有匀速运动和变速运动;
按轨迹分有直线运动和曲线运动、运动的形式取决于物体的初速度v0和合外力F,具体分类如下:
(1)F=0:
静止或匀速运动、
(2)F≠0:
变速运动、
①F为恒量时:
匀变速运动、
②F为变量时:
非匀变速运动、
(3)F和v0的方向在同一直线上时:
直线运动、
(4)F和v0的方向不在同一直线上时:
曲线运动、
2、合运动的性质和轨迹
两个互成角度的直线运动的合运动是直线运动还是曲线运动取
决于它们的合速度和合加速度方向是否共线(如图7所示)、
图7
常见的类型有:
(1)a=0:
匀速直线运动或静止、
(2)a恒定:
性质为匀变速运动,分为:
①v、a同向,匀加速直线运动;
②v、a反向,匀减速直线运动;
③v、a互成角度,匀变速曲线运动(轨迹在v、a之间,和速度v的方向相切,方向逐渐向a的方向接近,但不可能达到)、
(3)a变化:
性质为变加速运动、如简谐运动,加速度大小、方向都随时间变化、
例2在一光滑水平面内建立平面直角坐标系,一物体从t=0时刻起,由坐标原点O(0,0)开始运动,其沿x轴和y轴方向运动的速度—时间图象如图8甲、乙所示,以下说法中正确的选项是()
图8
A、前2s内物体沿x轴做匀加速直线运动
B、后2s内物体继续做匀加速直线运动,但加速度沿y轴方向
C、4s末物体坐标为(4m,4m)
D、4s末物体坐标为(6m,2m)
图9
跟踪训练2如图9所示的塔吊臂上有一可以沿水平方向运动的小
车A,小车下装有吊着物体B的吊钩、在小车A与物体B以相同的
水平速度沿吊臂方向匀速运动的同时,吊钩将物体B向上吊起,
A、B之间的距离以h=H-2t2规律变化(H为塔吊高),那么物体B做
()
A、速度大小不变的曲线运动
B、速度大小增加的曲线运动
C、加速度大小、方向均不变的曲线运动
D、加速度大小、方向均变化的曲线运动
考点三合运动与分运动的两个实例分析
1、小船渡河问题分析
(1)船的实际运动是水流的运动和船相对静水的运动的合运动、
(2)三种速度:
v1(船在静水中的速度)、v2(水的流速)、v(船的实际速度)、
(3)三种情景
①过河时间最短:
船头正对河岸时,渡河时间最短,t短=
(d为河宽)、
②过河路径最短(v2<
v1时):
合速度垂直于河岸,航程最短,x短=d.
③过河路径最短(v2>
合速度不可能垂直于河岸,无法垂
直渡河、确定方法如下:
如图10所示,以v2矢量末端为圆
图10
心,以v1矢量的大小为半径画弧,从v2矢量的始端向圆弧作
切线,那么合速度沿此切线方向航程最短、
由图可知:
sinθ=
,最短航程:
x短=
=
d.
特别提醒船的划行方向与船头指向一致(v1的方向),是分速度方向,而船的航行方向是实际运动的方向,也就是合速度的方向、
2、绳拉物体问题分析
在图11中,绳子在被沿径向拉动的同时,还在绕滑轮运动,
可见:
被拉物体既参与了沿绳子径向的分运动,又参与了绕
滑轮运动的分运动,被拉物体的运动应是这两个分运动的合
图11
运动,其速度是这两个分速度的合成、
例3一条船要在最短时间内渡过宽为100m的河,河水的流速v1与船离河岸的距离x变化的关系如图12甲所示,船在静水中的速度v2与时间t的关系如图乙所示,那么以下判断中正确的选项是()
图12
A、船渡河的最短时间25s
B、船运动的轨迹可能是直线
C、船在河水中航行的加速度大小为a=0.4m/s2
D、船在河水中的最大速度是5m/s
方法归纳小船渡河问题的有关结论
1、不论水流速度多大,船身垂直于河岸渡河时,所用时间最短,tmin=
,且这个时间与水流速度大小无关、
2、当v水<
v船时,合速度可垂直于河岸,最短航程为河宽、
3、当v水>
v船时,船不能垂直到达河对岸,但仍存在最短航程,当v船与v合垂直时,航程最短,最短航程为smin=
图13
例4如图13所示,在离水面高为H的岸边有人以大小为v0的速度匀速收绳使船靠岸,当岸上的定滑轮与船的水平距离为s时,船速多大?
方法突破求解运动的合成与分解的三个技巧
1、求解运动的合成与分解问题,应抓住合运动和分运动具有等时性、独立性、等效性的关系、
2、在小船渡河问题中可将小船的运动分解为沿船头指向的方向和沿水流方向的两个运动;
而在绳拉物体运动问题中常以绳与物体的连接点为研究对象,将物体的速度分解为沿绳方向和垂直绳方向的两个分速度、
3、合运动与分运动的时间相等,为t=
.
跟踪训练3一条河宽度为200m,河水水流速度是v1=2m/s,船在静水中航行速度为v2=4m/s,现使船渡河、
(1)如果要求船划到对岸航程最短,那么船头应指向什么方向?
最短航程是多少?
所用时间多长?
(2)如果要求船划到对岸时间最短,那么船头应指向什么方向?
最短时间是多少?
航程是多少?
跟踪训练4如图14所示,一辆汽车沿水平地面匀速行驶,通过跨过定滑轮的轻绳将一物体A竖直向上提起,在此过程中,物体A的运动情况是()
图14
A、加速上升,且加速度不断增大
B、加速上升,且加速度不断减小
C、减速上升,且加速度不断减小
D、匀速上升
10.简化曲线运动的处理方法——
利用运动分解实现曲线化直
图15
例5用一根细线拴住一块橡皮(可视为质点),把细线的另一端用
图钉固定在竖直图板上,按如图15所示的方式,用铅笔尖靠在线
的左侧,沿水平放置的固定直尺向右匀速滑动、当铅笔尖匀速滑
动的速度取不同的值时,在橡皮运动过程中的任一时刻,设橡皮
的速度方向与水平直尺的夹角为θ.关于θ,以下说法符合事实的
是()
A、铅笔尖的滑动速度越大,θ越小
B、铅笔尖的滑动速度越大,θ越大
C、与铅笔尖的滑动速度无关,θ不变
D、与铅笔尖的滑动速度无关,θ时刻变化
方法提炼处理复杂运动的重要方法是将复杂曲线运动分解为简单的直线运动,利用直线运动的规律可以解决复杂曲线运动问题,这就是曲线化直的思想、
跟踪训练5如图16所示,直角坐标系位于光滑水平面内,质量为m
的质点从坐标原点以初速度v0开始运动,v0的方向沿y轴正方向,
并且受到水平恒力F的作用,F与x轴成θ角,m=2kg,F=10
N,θ=37°
,v0=2m/s.试求2s内质点的位移及2s时质点的速度、
A组曲线运动概念及条件
1、以下关于运动和力的表达中,正确的选项是()
A、做曲线运动的物体,其加速度方向一定是变化的
B、物体做圆周运动,所受的合力一定指向圆心
C、物体所受合力方向与运动方向相反,该物体一定做直线运动
D、物体运动的速率在增加,所受合力方向一定与运动方向相同
2、关于曲线运动的性质,以下说法正确的选项是()
A、曲线运动一定是变速运动
B、曲线运动一定是变加速运动
C、变速运动不一定是曲线运动
D、运动物体的速度大小、加速度大小都不变的运动一定是直线运动
B组小船渡河问题及绳拉物体问题
3、如图17所示,当小车A以恒定的速度v向左运动时,对于B物体
来说,以下说法正确的选项是()
A、匀加速上升
B、B物体受到的拉力大于B物体受到的重力
图17
C、匀速上升
D、B物体受到的拉力等于B物体受到的重力
4、一小船在静水中的速度为3m/s,它在一条河宽150m、水流速度为4m/s的河流中渡河,那么该小船()
A、能到达正对岸
B、渡河的时间可能少于50s
C、以最短时间渡河时,它沿水流方向的位移大小为200m
D、以最短位移渡河时,位移大小为150m
课时规范训练
(限时:
45分钟)
【一】选择题
1、手持滑轮把悬挂重物的细线拉至如图1所示的实线位置,然后滑
轮水平向右匀速移动,运动中始终保持悬挂重物的细线竖直,
那么重物运动的速度()
A、大小和方向均不变
B、大小不变,方向改变
C、大小改变,方向不变
D、大小和方向均改变
2、有关运动的合成,以下说法正确的选项是()
A、两个直线运动的合运动一定是直线运动
B、两个不在一条直线上的匀速直线运动的合运动一定是直线运动
C、两个初速度为零的匀加速(加速度大小不相等)直线运动的合运动一定是匀加速直线运动
D、匀加速直线运动和匀速直线运动的合运动一定是直线运动
3、红蜡块可以在竖直玻璃管内的水中匀速上升,速度为v.假设在红蜡块
从A点开始匀速上升的同时,玻璃管从AB位置由静止开始水平向右
做匀加速直线运动,加速度大小为a,那么红蜡块的实际运动轨迹可
能是图2中的()
A、直线PB、曲线Q
C、曲线RD、无法确定
4、一质量为2kg的物体在如图3甲所示的xOy平面上运动,在x轴方向上的v-t图象和在y轴方向上的x-t图象分别如图乙、丙所示,以下说法正确的选项是()
A、前2s内物体做匀变速曲线运动
B、物体的初速度为8m/s
C、2s末物体的速度大小为8m/s
D、前2s内物体所受的合外力为16N
5、民族运动会上有一个骑射项目,运动员骑在奔驰的马背上,弯弓放箭射击侧向的固定目标、假设运动员骑马奔驰的速度为v1,运动员静止时射出的弓箭的速度为v2,直线跑道离固定目标的最近距离为d,要想在最短的时间内射中目标,那么运动员放箭处离目标的距离应该为()
A.
B.
C.
D.
6、一轮船的船头指向始终垂直于河岸的方向,并以一定的速度向对岸行驶,水匀速流动,那么关于轮船通过的路程、渡河经历的时间与水流速度的关系,以下说法正确的选项是
A、水流速度越大,路程越长,时间越长
B、水流速度越大,路程越短,时间越短
C、渡河时间与水流速度无关
D、路程和时间都与水流速度无关
7、一物体由静止开始自由下落,一小段时间后突然受一恒定水平向右的风力的影响,但着地前一段时间内风力突然停止,那么其运动的轨迹可能是()
8、小钢球m以初速度v0在光滑水平面上运动后,受到磁极的侧向
作用力而做如图4所示的曲线运动到D点,从图可知磁极的位
置及极性可能是()
A、磁极在A位置,极性一定是N极
B、磁极在B位置,极性一定是S极
C、磁极在C位置,极性一定是N极
D、磁极在B位置,极性无法确定
9、一个物体在F1、F2、F3、…、Fn共同作用下做匀速直线运动,假设突然撤去外力F2,那么该物体()
A、可能做曲线运动
B、不可能继续做直线运动
C、一定沿F2的方向做直线运动
D、一定沿F2的反方向做匀减速直线运动
10、一快艇要从岸边某处到达河中离岸100m远的浮标处,快艇在静水中的速度图象如图5甲所示,流水的速度图象如图乙所示,假设行驶中快艇在静水中航行的分速度方向选定后就不再改变,那么()
甲乙
图5
A、快艇的运动轨迹可能是直线
B、快艇的运动轨迹只可能是曲线
C、最快到达浮标处通过的位移为100m
D、最快到达浮标处所用时间为20s
【二】非选择题
11、假设“运12”飞机在航空测量时,它的航线要严格地从东到西,如果飞机的速度是80km/h,风从南面吹来,风的速度为40km/h,那么:
(1)飞机应朝哪个方向飞行?
(2)如果所测地区长达80
km,所需时间为多少?
12、如图6所示,虚线MN为足够大的光滑水平面上的一条界线,界线
的右侧是力的作用区、OP为力的作用区内一条直线,OP与界线
MN夹角为α.可视为质点的不同小球,沿光滑水平面从界线的O点
不断地射入力的作用区内,小球一进入力的作用区就受到水平恒
力作用,水平恒力方向平行于MN且由M指向N,恒力大小与小球
的质量成正比,比例系数为k.试求:
(1)当小球速度为v0,射入方向与界线NM的夹角为β时,小球在力
的作用区内运动时的最小速度的大小;
(2)当小球以速度v0垂直界线MN射入时,小球从开始射入到(未越过OP直线)距离OP直线最远处所经历的时间;
(3)当小球以大小不同的速度垂直界线MN射入且都能经过OP直线时,试证明:
所有小球经过OP直线时的速度方向都相同、
复习讲义
基础再现
【一】
基础导引1.如下图,头部入水过程中速度方向如图中箭头所示、在A、C位置头部的速度方向与入水时速度v的方向相同;
在B、D位置头部的速度方向与入水时速度v的方向相反、
2、如下图,AB段是曲线运动,BC段是直线运动,CD段是曲线运
动、知识梳理1.
(1)切线
(2)方向变速加速度2.
(1)
合外力
(2)加速度3.力的方向与速度的方向力
思考:
变速运动不一定是曲线运动,如匀变速直线运动、曲
线运动一定是变速运动,因为速度方向一定变化、曲线运动不一定是非匀变速运动,如平抛运动是曲线运动,也是匀变速运动、
【二】
基础导引1.BC
2、见解析
解析跳伞员在有风时着地的速度,为降落伞无风时匀速下降的速度和风速的合速度,如下图、由勾股定理求得v地=
m/s
≈6.4m/s
设着地速度v地与竖直方向的夹角为θ,那么tanθ=
=0.8
查三角函数表得θ≈38.7°
知识梳理2.实际效果正交分解3.平行四边形定那么4.相等独立相同
不一定、应根据合加速度方向与合初速度方向判定合运动是直线运动还是曲线运动.
两个互成角度的分运动
合运动的性质
两个匀速直线运动
匀速直线运动
一个匀速直线运动、
一个匀变速直线运动
匀变速曲线运动
两个初速度为零的
匀加速直线运动
两个初速度不为零的
匀变速直线运动
如v合与a合共线,为匀变速直线运动
如v合与a合不共线,为匀变速曲线运动
课堂探究
例1A
跟踪训练1A
例2AD
跟踪训练2BC
例3C
例4
跟踪训练3
(1)斜上游,与岸夹角为60°
200m57.7s
(2)垂直河岸50s224m
跟踪训练4B
例5C
跟踪训练52
m,与x方向夹角arctan
8
m/s,与x方向夹角45°
分组训练
1.C2.AC3.B4.C
1、A
2、C
3、B
4、A
5、B
6、C
7、C
8、D
9、A
10、BD
11、
(1)飞机应朝西偏南30°
角方向飞行
(2)2h
12、
(1)v0sinβ
(2)
(3)见解析
(3)设垂直界线射入的小球速度为v′,x=v′t
y=
at2=
kt2
小球经过直线OP时应有:
cotα=
,得
t=
vy′=at=kt=2v′cotα
tanθ=
=2cotα(θ为初速度方向与小球过OP直线时的速度方向的夹角)
所以小球经过直线OP的速度方向都相同、