三元材料锂电池是怎么回事四文档格式.docx

上传人:b****3 文档编号:17307494 上传时间:2022-12-01 格式:DOCX 页数:9 大小:100.13KB
下载 相关 举报
三元材料锂电池是怎么回事四文档格式.docx_第1页
第1页 / 共9页
三元材料锂电池是怎么回事四文档格式.docx_第2页
第2页 / 共9页
三元材料锂电池是怎么回事四文档格式.docx_第3页
第3页 / 共9页
三元材料锂电池是怎么回事四文档格式.docx_第4页
第4页 / 共9页
三元材料锂电池是怎么回事四文档格式.docx_第5页
第5页 / 共9页
点击查看更多>>
下载资源
资源描述

三元材料锂电池是怎么回事四文档格式.docx

《三元材料锂电池是怎么回事四文档格式.docx》由会员分享,可在线阅读,更多相关《三元材料锂电池是怎么回事四文档格式.docx(9页珍藏版)》请在冰豆网上搜索。

三元材料锂电池是怎么回事四文档格式.docx

[Ni1/3Co1/3Mn1/3]超晶格型结构模型LiNi1/3Co1/3Mn1/3O2有序堆积简模型

三元材料LiNi1/3Co1/3Mn1/3O2的电化学性能及热稳定性

LiNi1/3Co1/3Mn1/3O2作为锂离子电池正极材料,具有较高的锂离子扩散能力,理论容量达278mAh/g,在充电过程中,在3.6V~4.6V之间有两个平台,一个在3.8V左右,另一个在4.5V左右,主要归因于Ni2+/Ni4+和Co3+/Co4+2个电对,且容量可达250mAh/g,为理论容量的91%。

在2.3V~4.6V电压范围内,放电比容量为190mAh/g,100次循环后,可逆比容量比190mAh/g还要多。

在2.8V~4.3V、2.8V~4.4V和2.8V~4.5V电位范围内进行电性能测试,放电比容量分别为159mAh/g、168mAh/g和177mAh/g.且在不同温度下(55℃、75℃、95℃)和不同倍率放电时充放电,材料的结构变化均较小,具有良好的稳定性,高温性能良好,但低温性能有待改进。

锂离子电池的安全性一直都是商业化的一个重要衡量标准,在充电状态下与电解液的热效应是正极材料是否适用于锂离子电池的关键。

DSC测试结果表明,充电后的LiNi1/3Co1/3Mn1/3O2在250~350℃未发现尖峰,LiCoO2在160℃和210℃有2个放热尖峰,LiNiO2在210℃有一个放热尖峰。

三元材料在这个温度范围内也有一些放热和吸热反应,但反应要温和得多。

三元材料LiNi1/3Co1/3Mn1/3O2的制备技术有哪些:

正极材料微观结构的改善和宏观性能的提高与制备方法密不可分,不同的制备方法导致所制备的材料在结构、粒子的形貌、比表面积和电化学性质等方面有很大的差别。

目前LiNi1/3Co1/3Mn1/3O2的制备技术主要有固相合成法、化学沉淀法、溶胶凝胶法、水热合成法、喷雾降解法等。

固相合成法:

一般以镍钴锰和锂的氢氧化物或碳酸盐或氧化物为原料,按相应的物质的量配制混合,在700~1000℃煅烧,得到产品。

该方法主要采用机械手段进行原料的混合及细化,易导致原料微观分布不均匀,使扩散过程难以顺利地进行,同时,在机械细化过程中容易引入杂质,且煅烧温度高,煅烧时间长,反应步骤多,能耗大,锂损失严重,难以控制化学计量比,易形成杂相,产品在组成、结构、粒度分布等方面存在较大差异,因此电化学性能不稳定。

案例1、Y.J.Shin等将Co3O4和Li2CO3通过固相反应制得LiCoO2,然后将适量的LiCoO2、NiO、MnO2和Li2CO3通过固相反应得到LiNi1/3Co1/3Mn1/3O2。

由于配料混合的不均匀性直接影响到正极材料中镍钴锰分布,因此产品在组成、结构、粒度分布等方面存在较大差别,材料电化学性能重现性不好。

案例2、N.Yabuuchi等将Ni(OH)2、Co(OH)2和Mn(OH)2按Co:

Ni:

Mn=0.98:

1.02:

0.98充分混合,球磨,在150℃下预热1h,然后在空气中加热到1000℃烧结14h得到LiNi1/3Co1/3Mn1/3O2,用高温固相法直接烧结上述原料,容易出现混料不均、无法形成均相共熔体以及各批次产物质量不稳定等问题。

溶胶-凝胶法:

先将原料溶液混合均匀,制成均匀的溶胶,并使之凝胶,在凝胶过程中或在凝胶后成型、干燥,然后煅烧或烧结得所需粉体材料。

溶胶凝胶技术需要的设备简单,过程易于控制,与传统固相反应法相比,具有较低的合成及烧结温度,可以制得高化学均匀性、高化学纯度的材料,但是合成周期比较长,合成工艺相对复杂,成本高,工业化生成的难度较大。

案例:

J.Li等以锂、镍、锰、钴的乙酸盐为原料,柠檬酸为络合剂,在80℃制成溶胶,然后在120℃干燥,形成凝胶,并在450℃预烧5h,900℃再焙烧15h,得到最终产物。

化学共沉淀法:

一般是把化学原料以溶液状态混合,并向溶液中加入适当的沉淀剂,使溶液中已经混合均匀的各个组分按化学计量比共沉淀出来,或者在溶液中先反应沉淀出一种中间产物,再把它煅烧分解制备出微细粉料。

化学共沉淀法分为直接化学共沉淀法和间接化学共沉淀法。

直接化学共沉淀法是将Li、Ni、Co、Mn的盐同时共沉淀,过滤洗涤干燥后再进行高温焙烧。

间接化学共沉淀法是先合成Ni、Co、Mn三元混合共沉淀,然后再过滤洗涤干燥后,与锂盐混合烧结;

或者在生成Ni、Co、Mn三元混合共沉淀后不经过过滤而是将包含锂盐和混合共沉淀的溶液蒸发或冷冻干燥,然后再对干燥物进行高温焙烧。

与传统的固相合成技术相比,采用共沉淀方法可以使材料达到分子或原子线度化学计量比混合,易得到粒径小、混合均匀的前驱体,且煅烧温度较低,合成产物组分均匀,重现性好,条件容易控制,操作简单,目前工业上已有规模生产。

案例1、S.C.Zhang等以LiNO3、Ni(NO3)2、Co(NO3)2和MnCl2为原料按摩尔量的比3.3:

1:

1溶解在乙醇里形成总离子浓度为3mol/L的溶液,将此溶液以1滴/秒的速度滴加到3mol/L的KOH乙醇溶液中,分离出沉淀并在80℃干燥10h,然后在空气中于400~800℃煅烧,获得粒径10~40nm的粉末正极材料。

案例2、X.F.Luo等按化学计量比将NiS04·

6H20、CoSO4·

7H2O和MnS04·

H2O溶解到蒸馏水中,在该混合溶液中缓慢加入2mol/LNaOH溶液和适量的2mol/LNH4OH,同时在50℃氩气保护下激烈搅拌24h。

反应完全后,将所得沉淀物过滤,并用蒸馏水洗涤,在50~60℃真空条件下干燥一夜。

将所得产物与过量5%的Li0H·

H20混合。

将所得粉末压成饼状,在480℃加热5h,650℃加热9h,然后在空气中于700~1000℃煅烧18h,获得LiNi1/3C01/3Mn1/302。

在以氢氧化物作沉淀剂的共沉淀的过程中,如果反应没有惰性气体保护,初始得到的Mn(OH)2就很容易被氧化成Mn00H和Mn02,而Mn2+则能在碳酸根离子或草酸根离子中稳定存在。

因此T.H.Cho工作组分别采用碳酸盐共沉淀法和草酸盐共沉淀法制备出正极材料LiNi1/3C01/3Mn1/302。

水热合成法:

水热合成技术是指在高温高压的过饱和水溶液中进行化学合成的方法,属于湿化学法合成的一种。

利用水热法合成的粉末一般结晶度高,并且通过优化合成条件可以不含有任何结晶水,且粉末的大小、均匀性、形状、成份可以得到严格的控制。

水热合成省略了锻烧步骤和研磨的步骤,因此粉末的纯度高,晶体缺陷的密度降低。

但是对于锂离子电池来说水热法并不是很好,当用水热法以CoOOH为前驱体合成LiCoO2时,研究表明在160℃的高压釜中反应48h,可以从混合物得到单相的LiCoO2,但其循环性能并不好,需要在高温下热处理,提高其结晶度后,LiCoO2的循环性能得以改善

其他方法:

将镍、钴、锰、硝酸锂在氨基乙酸中于400℃点燃,燃烧产物碾碎后在空气中800℃加热4h,冷却后得到正极材料;

将蒸馏水溶解的硝酸锂、镍钴锰盐通过喷雾干燥法制备得到正极材料;

以镍钴锰盐为原料,柠檬酸为络合剂,配成溶液送入超声喷雾热分解装置,得到[Ni1/3Co1/3Mn1/3]O2前驱体,再将前驱体与锂盐混合高温烧结得到正极材料;

化学共沉淀法制备LiNi1/3Co1/3Mn1/3O2(方法与结论)

1、北京大学化工学院采用化学沉淀法制备出了LiXNi1/3Co1/3Mn1/3O2。

即用去离子水将摩尔比为1:

1的镍钴锰三氯化物配成1.5M的溶液,将三元氯化物溶液和碳酸氢铵溶液以固定的流速滴入装有40℃去离子水的烧杯中,高速搅拌后真空抽滤,用去离子水多次洗涤后120℃烘干得到前驱体。

将前驱体与碳酸锂按照1.05:

1混合并在马沸炉中1000℃煅烧12h,自然冷却后研磨筛分得到三元正极材料。

2、华南农业大学理学院采用共沉淀法合成了正极材料LiNi1/3Co1/3Mn1/3O2。

镍、钴、锰三元共沉淀物前驱体的合成方法为控制结晶法。

沉淀剂分别为LiOH、NaOH+NH3.H2O、NH4HCO3、Na2CO3和NH4HCO3+Na2CO3。

按镍钴锰1:

1称取硝酸镍、硝酸钴和硝酸锰配成适当浓度的混合溶液,将此混合溶液和适当浓度的沉淀剂通过流量计加入到反应釜中,控制搅拌速度、PH值和温度。

所得沉淀用去离子水洗涤干燥后得到镍钴锰三元沉淀物前驱体Ni1/3Co1/3Mn1/3(OH)2或Ni1/3Co1/3Mn1/3CO3。

以n(Li):

n(Ni1/3Co1/3Mn1/3)=1.05:

1的比例将Li2CO3和前驱体球磨混合,将混合好的原料放入坩埚中并用一定大小的压力将混合物压紧,将坩埚放入程序控温箱式电阻炉内,在空气气氛下于480℃恒温若干小时,再以一定的升温速率升温至950℃,保温一定时间后缓慢降至室温,得到三元正极材料,将烧制好的样品粉碎、研磨并过400目筛备用。

结论:

由不同沉淀剂所合成的LiNi1/3Co1/3Mn1/3O2材料具有均具有α2NaFeO2型层状结构。

以不同沉淀剂合成的产物的形貌有较大差异,而且影响了产物LiNi1/3Co1/3Mn1/3O2正极材料的电化学性能。

其中采用NH4HCO3+Na2CO3为沉淀剂所合成的LiNi1/3Co1/3Mn1/3O2材料的电化学性能最好,首次放电比容量为190.29mAh/g,20次循环后放电容量还保持161.29mAh/g,容量保持率为84.8%。

3、湘潭大学化学院以NiSO4、CoSO4、MnSO4、NH3·

H2O、LiOH为原料,采用共沉淀和高温烧结法制备了锂离子电池正极材料LiNi1/3Co1/3Mn1/3O2,并研究前体驱的制备中氨水用量对共沉淀的影响。

结果表明,n(NH3·

H2O):

n(Ni2+-Co2+-Mn2+)=2.7:

1制备的前驱体,在900℃下煅烧10h,制备的LiNi1/3Co1/3Mn1/3O2材料的结构与电化学性能较好,其首次放电容量达到187.5mAh·

g-1,0.2C倍率50次循环后容量仍为170.6mAh·

g-1,容量保持率为94.0%。

由不同前驱体制备的LiNi1/3Co1/3Mn1/3O2正极材料中,当按n(NH3·

n(Ni2+-Co2+-Mn2+)的值为2.7:

1制备的前驱体Ni1/3Co1/3Mn1/3(OH)2,合成的正极材料LiNi1/3Co1/3Mn1/3O2的结构与性能较好。

4、Yoshio采用碳酸盐共沉淀法合成的球形LiNi1/3Co1/3Mn1/3O2,产品半径在5μm左右,在电压范围内2.8~4.5V放电容量达到186.7mAhg-1,不可逆容量损失仅为10.72%,且倍率性能好,以2.5C放电,容量为145mAhg-1。

5、Sun和罗旭芳等采用氢氧化物共沉淀法,通过调整前驱体制备时的PH值、搅拌速度、络合剂的量,制备得到粒径为10μm、分布均一的类球形前驱体,与LiOH烧结后得到振实密度高达2.39g.cm-1的正极材料,比容量达到177mAhg-1(2.8~4.5V),同时也具有较好的高温放电性能,在55℃放电比容量高达168mAhg-1。

6、Ohzuku采用共沉淀法合成的Ni1/3Co1/3Mn1/3(OH)2前驱体与LiOH.H2O反应合成的LiNi1/3Co1/3Mn1/3O2具有较好的高温放电性能以及大电流放电性能,在33℃、55℃、75℃测得材料的放电比容量分别为205mAhg-1、210mAhg-1、225mAhg-1;

在55℃以20C放电容量达160mAhg-1。

在2.5~4.6V电压范围内,以18.3mA/g放电,其比容量高达200mAhg-1,放电平台在3.75V左右,首次循环不可逆容量仅为20mAhg-1。

7、Zhang等用有机溶剂共沉淀法制得粒径为10~40nm的LiNi1/3Co1/3Mn1/3O2,在50C、100C放电倍率下,经过10个循环其比容量为100mAhg-1,即比功率为15000KW.g-1,满足绿色动力车的能源需求。

8、中科院青海盐湖研究所将一定量的Co(NO3)2·

6H2O、Ni(CH3COO)2·

4H20和Mn(CH3COO)2·

4H20,按化学计量比溶于二次蒸馏水中,同时,向混合溶液中通人氩气;

待盐完全溶解后,向混合溶液中滴加适量的草酸溶液,并用适量的NH3·

H20调节溶液的pH值为8-9;

过滤出的沉淀用蒸馏水洗涤多次至中性后50℃真空干燥,得到淡粉色的粉末。

取一定量淡粉色物质与化学计量比的Li2CO3混合,在强力搅拌下分散于C2H5OH/H2O的混合溶剂中;

待多元混合物于50℃真空干燥后,在空气中500℃预烧6h;

待预烧产物冷却至室温后压成片状,压片于700~1000℃空气中焙烧12~24h后冷却至室温后,充分研磨即得到三元正极材料LiMnl/3Col/3Nil/302。

在制备三元正极材料LiCol/3Nil/3Mn1/302的过程中,利用氩气作为保护气氛,采用共沉淀法制备得到的前驱体[Mnl/3Nil/3C01/3]C204·

xH20中Co、Mn和Ni均为+2价,保证了前驱体中各离子的分散均匀性,并得到了分散均匀的三元沉淀;

[Mnl/3Nil/3Co1/3]C204·

xH20的TG/DSC分析表明,[Mnl/3Nil/3C01/3]C204·

xH20中的x=2。

[Mnl/3Nil/3C01/3]C204·

xH20与碳酸锂的混合物在乙醇一水溶液中能得到分散均匀的前驱体;

前驱体的TG/DSC以及XRD研究表明,LiCo1/3Ni1/3Mn1/302的合成温度大于600℃;

且混合物在500℃预烧后于900℃煅烧12—24h即可合成具有良好结晶三元正极材料。

电池循环测试表明,900℃温度下合成的正极材料具有较高的首次充放电容量,首次放电效率达到94.3%;

循环伏安扫描分析表明以此法(氩气保护草酸共沉淀,乙醇溶液分散,900℃空气中煅烧)合成的三元正极LiCol/3Ni1/3Mn1/302在4.5V附近没有不可逆容量所造成的阳极峰,表明900℃温度下合成的正极材料在经过多次循环后仍具有较高的容量。

9、Hu将相等摩尔比的Ni、Co和Mn硝酸盐在室温下进行搅拌,然后加入适量的LiOH·

H20,加入NH4OH作为螯合剂。

共沉淀物通过过滤、洗涤、干燥后,将共沉淀氢氧化物先在500℃煅烧5h,然后将LiOH·

H20与经过煅烧后的产物CoNiMn04按照化学计量比进行混合球磨。

先在450℃固相煅烧6h,然后再在900℃固相煅烧12h。

制备的材料的晶格参数a=0.2882nm,c=1.4382nm。

在3.0-4.5V电压下,分别在0.1,0.5和1.0C下充放电,其首次放电容量分别为189.54,168.37和167.59mAh·

g-1,50次循环后的容量保持率分别为92.59%,78.70%和62.51%。

采用氢氧化物共沉淀法制各正极材料前驱体,Mn不仅以Mn(OH)2的形式沉淀,部分还会被氧化为Mn3+和Mn4+,以MnOOH或Mn02的形式沉淀出来,因此,在前驱体制备过程中,可以使用惰性气体进行保护,防止Mn2+的氧化。

10、Cho以Na2C03为沉淀剂,制备了LiNil/3Col/3Mn1/302,在2.8—4.5V电压下,在20mA·

g-1电流密度下,材料的放电比容量为186.7mAh·

g-1,循环30次后,材料的容量保持率为89.28%。

在2.5C(450mA·

g-1)条件下,首次放电比容量为144.79mAh·

g-1。

通过对比研究,结果表明LiNil/3Col/3Mn1/302正极材料的晶体结构和电化学性能随着合成条件的变化而改变。

采用碳酸盐共沉淀法虽然能够解决Mn(OH)2在空气中易被氧化的问题,但在实际操作中碳酸盐与Ni、Co和Mn离子的沉淀不完全,限制了其在商业化生产中的应用,需要做进一步的研究以后,才能进入工业化的应用。

11、江南大学化工学院将摩尔比为1:

1:

l的Ni(NO3)2·

6H20,Co(N03)2·

6H20,Mn(CH3C00)2·

4H20溶于去离子水中,配成2mol/L的溶液。

将其缓慢滴加到连续搅拌的反应釜中。

同时,将Na0H-Na2C03(摩尔比为1:

1,NaOH浓度为1mol/L)溶液滴入反应釜中,小心调节搅拌器的转速以及两种溶液的滴加速度,以维持溶液的pH为11左右。

当两种溶液滴加完成后,继续快速搅拌10h,并严格控制溶液的pH值。

将沉淀过滤、洗涤、干燥,于5∞℃下分解5h。

取出后加入过量5%的Li0H·

H20,充分研磨均匀,放人马弗炉中分别以850℃、900℃、950℃的温度烧结10h,自然冷却至室温,研磨,再在前一温度的基础上烧结10h,制得最终产物。

以Ni(N03)2·

6H20,Mn(CH3COo)2·

4H20,LiOH·

H20为原料,采用Na0H—Na2C03共沉淀的方法,以850℃、900℃、950℃的温度,在空气中合成了具有完整的α-NaFe02结构的三元层状材料LiNi1/3C0l/3Mnl/302。

测试结果表明,在相同的烧结制度下,900℃合成的材料初次放电容量达到169.4nAh/g,初次库仑效率达到83.2%,20次循环仍能保持其初始容量的96.3%,显示出良好的循环性能。

有望作为优良的锂离子电池正极材料。

12、Shao-KangHu等将相等摩尔比的Ni、Co、Mn金属硝酸盐在室温下进行搅拌,然后加入适量的LiOH·

H2O,NH4OH作为螯合剂加入。

共沉淀物通过过滤、洗涤、干燥后,将共沉淀氢氧化物先在500℃进行5h的煅烧,然后将LiOH·

H2O与经过煅烧后的产物CoNiMnO4,按照化学计量比进行混合,球磨。

LiNi1/3Co1/3Mn1/3O2材料的制备是通过在马弗炉中,450℃,固相煅烧6h,900℃,固相煅烧12h完成的。

晶胞参数a=2.882Å

,c=14.38Å

在3.0~4.5V充放电电压范围,以0.1C,0.5C,1C倍率充放电,首次放电容量分别为189.54mAh·

g-1,168.37mAh·

g-1,167.59mAh·

g-1,50次循环以后的容量保持率分别为92.59%,78.70%,62.51%。

13、对于合成高密度前驱体Ni1/3Co1/3Mn1/3(OH)2的方法,根据相关文献的报道,作为络合剂的氨水是获得高密度前驱体的一个关键因素,选择过渡金属的醋酸盐,醋酸镍(Ni(CH3COO)2·

4H2O),醋酸钴(Co(CH3COO)2·

4H2O)和醋酸锰(Mn(CH3COO)2·

4H2O)作为过渡金属离子原料,氢氧化锂(LiOH·

H2O)为沉淀剂,氨水作为络合剂。

实验路线为先将三种金属离子的醋酸盐按照相同的摩尔浓度混合均匀,然后加入沉淀剂进行共沉淀反应,再加入氨水作为络合剂,反应的终点通过加入氨水控制pH值来决定。

实验在普通的空气气氛下进行,恒温水浴箱温度控制在55℃附近。

我们对能够影响到最终共沉淀产物形貌和性能的参数,如:

pH值,过渡金属浓度,沉淀剂浓度,络合剂浓度等因素进行了详细的研究。

pH值为10.5时,制备的前躯体颗粒大小适中,分布均匀,所得类球形颗粒形貌最规则,尺寸均一,直径在20μm左右;

当pH值为9.5时,颗粒大小不一,其中有大颗粒,也有小颗粒,粒度分布不均匀,这些小颗粒可能是反应后期生成的富镍颗粒;

随着pH值的逐渐增大,溶液的过饱和度增大,以成核为主导,晶粒长大变得困难,当pH值为11.5时,颗粒变小,球形度降低,颗粒间的分散性较差,此时晶粒尺寸较小,表面层离子的极化变形和重排使表面晶格畸变,有序性降低,在pH值较高时(pH值=11.5),液相共沉淀溶液为深褐色,溶液中晶粒的成核速度明显大于晶粒的成长速度,在碱性条件下,Mn(OH)2很容易和空气或者是反应溶液中的氧气发生反应生成MnO(OH),在整个共沉淀过程中,不断有这样的富锰小颗粒生成,这些小颗粒的径粒尺度在1.5~4.5μm,没有达到共沉淀的目的。

当pH值继续增大时,会使晶核结构趋于无定形化,逐渐有絮状沉淀生成。

对于金属离子浓度的选择,当金属离子浓度为2.0mol·

L得到的前躯体整体形貌规整,颗粒尺度接近,颗粒粒径在25μm附近所以认为金属离子浓度为2.0mol·

L-1是一个合适的选择。

当沉淀剂浓度较小,为2.0mol·

L-1时,存在部分大颗粒(颗粒粒径在40μm左右)和小颗粒(颗粒粒径在10μm左右),粒度分布不够均匀,并且振实密度偏低,经测试为1.21g·

cm-3,随着沉淀剂浓度的增加,这种情况逐渐改善,沉淀剂浓度在3.0mol·

L-1附近时,颗粒尺度相对接近,但是仍有细小颗粒的存在,当沉淀剂浓度增加到4.0mol·

L-1,得到的前躯体颗粒形貌规整,颗粒尺度接近,颗粒粒径在15μm附近,振实密度为1.56g·

cm-3。

最后,当沉淀剂浓度在5.0mol·

L-1,颗粒明显变小,球形度降低,颗粒间的分散性较差。

所以通过上述分析,认为沉淀剂浓度在4.0mol·

L-1附近的时候,制备的前躯体从颗粒尺度,整体形貌均符合要求。

由于Ni,Co,Mn三种金属阳离子与氨水的络合能力不同,强弱顺序为Ni2+>

Co2+>

Mn2+,所以当络合剂浓度过高时(4.5~6.0mol·

L-1),容易出现很多细小的颗粒,径粒在2~4.5μm,这些就是富镍小晶粒。

造成不均匀沉淀。

当络合剂浓度为3mol·

L-1时,三种阳离子的沉淀速度比较一致,在氨水的络合作用下,晶粒的生长速度大于成核速度,使晶粒有序生长,沉淀均匀,颗粒大小尺度接近。

而过低的络合剂浓度同样不利于共沉淀产物的生成,当络合剂浓度较小的时候,络合反应时间增加,并且需要较大的反应容积,所以通过以上分析,选择相对较小的络合剂浓度

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高中教育 > 高考

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1