一元一次方程应用题解题方法与归类Word文件下载.docx

上传人:b****6 文档编号:17298422 上传时间:2022-12-01 格式:DOCX 页数:8 大小:24.78KB
下载 相关 举报
一元一次方程应用题解题方法与归类Word文件下载.docx_第1页
第1页 / 共8页
一元一次方程应用题解题方法与归类Word文件下载.docx_第2页
第2页 / 共8页
一元一次方程应用题解题方法与归类Word文件下载.docx_第3页
第3页 / 共8页
一元一次方程应用题解题方法与归类Word文件下载.docx_第4页
第4页 / 共8页
一元一次方程应用题解题方法与归类Word文件下载.docx_第5页
第5页 / 共8页
点击查看更多>>
下载资源
资源描述

一元一次方程应用题解题方法与归类Word文件下载.docx

《一元一次方程应用题解题方法与归类Word文件下载.docx》由会员分享,可在线阅读,更多相关《一元一次方程应用题解题方法与归类Word文件下载.docx(8页珍藏版)》请在冰豆网上搜索。

一元一次方程应用题解题方法与归类Word文件下载.docx

 

(2)两车同时开出,相背而行多少小时后两车相距600公里?

 (3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?

 (4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?

 (5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?

  此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。

故可结合图形分析。

(1)分析:

相遇问题,画图表示为:

等量关系是:

 

(2)分析:

相背而行,画图表示为:

  

  (3)分析:

等量关系为:

快车所走路程-慢车所走路程+480公里=600公里。

  解:

设x小时后两车相距600公里,由题意得,

 

(4)分析:

追及问题,画图表示为:

快车的路程=慢车走的路程+480公里。

  

解:

设x小时后快车追上慢车。

由题意得,  

(5)分析:

追及问题,等量关系为:

(二)行船问题

流水问题是研究船在流水中的行程问题,因此,又叫行船问题。

流水问题有如下两个基本公式:

顺水速度=船速+水速 

(1)

逆水速度=船速-水速 

(2)

水速=船速-逆水速度 

(3) 

船速=逆水速度+水速 

(4) 

船速=(顺水速度+逆水速度)÷

2(5) 

 

水速=(顺水速度-逆水速度)÷

(6)

一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?

(三)工程问题:

工程问题中的三个量及其关系为:

工作总量=工作效率×

工作时间

经常在题目中未给出工作总量时,设工作总量为单位1。

例一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?

分析设工程总量为单位1,等量关系为:

(四)和差倍分问题(生产、做工等各类问题)

1.和、差、倍、分问题:

(1)倍数关系:

通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。

(2)多少关系:

通过关键词语“多、少、和、差、不足、剩余……”来体现。

某车间加工30个零件,甲工人单独做,能按计划完成任务,乙工人单独做能提前一天半完成任务,已知乙工人每天比甲工人多做1个零件,问甲工人每天能做几个零件?

原计划几天完成?

(五)劳力调配问题:

这类问题要搞清人数的变化.

例.1.某厂一车间有64人,二车间有56人。

现因工作需要,要求第一车间人数是第二车间人数的一半。

问需从第一车间调多少人到第二车间?

2.甲、乙两车间各有工人若干,如果从乙车间调100人到甲车间,那么甲车间的人数是乙车间剩余人数的6倍;

如果从甲车间调100人到乙车间,这时两车间的人数相等,求原来甲乙车间的人数。

(六)配套问题:

1.某车间有28名工人生产螺栓和螺母,每人每小时平均能生产螺栓12个或螺母18个,应如何分配生产螺栓和螺母的工人,才能使螺栓和螺母正好配套(一个螺栓配两个螺母)

2.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?

(七)分配问题:

例.学校分配学生住宿,如果每室住8人,还少12个床位,如果每室住9人,则空出两个房间。

求房间的个数和学生的人数。

(八)年龄问题:

甲比乙大15岁,5年前甲的年龄是乙的年龄的两倍,乙现在的年龄是________.

(九)比赛积分问题:

10.某企业对应聘人员进行英语考试,试题由50道选择题组成,评分标准规定:

每道题的答案选对得3分,不选得0分,选错倒扣1分。

已知某人有5道题未作,得了103分,则这个人选错了______道题。

(十)利润赢亏问题

(1)销售问题中常出现的量有:

进价、售价、标价、利润等

(2)有关关系式:

商品利润=商品售价—商品进价=商品标价×

折扣率—商品进价

商品利润率=商品利润/商品进价

商品售价=商品标价×

折扣率

例.一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?

分析:

探究题目中隐含的条件是关键,可直接设出成本为X元

进价

标价

优惠价

利润

x元

8折

(1+40%)x元

80%(1+40%)x

15元

等量关系:

(利润=折扣后价格—进价)折扣后价格-进价=15

设进价为X元,

(十一)储蓄问题

⑴顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率。

利息的20%付利息税

⑵利息=本金×

利率×

期数本息和=本金+利息利息税=利息×

税率(20%)

例.某同学把250元钱存入银行,整存整取,存期为半年。

半年后共得本息和252.7元,求银行半年期的年利率是多少?

(不计利息税)

本息和=本金×

(1+利率)

设半年期的实际利率为x,

(十二)增长率问题:

1.某化肥厂去年生产化肥3200吨,今年计划生产3600吨,今年计划比去年增产%

2.某加工厂有出米率为70%的稻谷加工大米,现在加工大米100公斤,设要这种大米x公斤,则列出的正确的方程是。

(十三)数字问题:

(1)要搞清楚数的表示方法:

一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1≤a≤9,0≤b≤9,0≤c≤9)则这个三位数表示为:

100a+10b+c。

(2)数字问题中一些表示:

两个连续整数之间的关系,较大的比较小的大1;

偶数用2n表示,连续的偶数用2n+2或2n—2表示;

奇数用2n+1或2n—1表示。

1.有一个三位数,个位数字为百位数字的2倍,十位数字比百位数字大1,若将此数个位与百位顺序对调(个位变百位)所得的新数比原数的2倍少49,求原数。

(十四)古典数学:

1.100个和尚100个馍,大和尚每人吃两个,小和尚两人吃一个,问有多少大和尚,多少小和尚。

2.有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只?

练习:

1、已知A、B相距60千米,甲位于A处,骑自行车,他的速度是每小时15千米,乙位于B处,开汽车,他的速度是每小时45千米。

(1)若他们同时相向而行,则经几小时他们相遇?

(2)若他们相向而行,小明先骑车0.5小时,问几小时他们相遇?

(3)若他们同时同向而行,则经几小时乙追上甲?

(4)若他们同向而行,甲先骑车1小时以后,问乙经几小时追上甲?

(5)若他们同向而行,甲先骑车1小时以后,发现他的一个重要文件在乙那里,因此掉头去拿,同时乙也开车给甲送去,问甲经几小时和乙碰到?

2、A、B两地相距1200千米。

甲从A地、乙从B地同时出发,相向而行。

甲每分钟行50千米,乙每分钟行70千米。

两人在C处第一次相遇。

问AC之间距离是多少?

如相遇后两人继续前进,分别到达A、B两地后立即返回,在D处第二次相遇。

问CD之间距离是多少?

3.从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲乙两地相距x千米,则列方程为________________。

4.某人从家里骑自行车到学校。

若每小时行15千米,可比预定的时间早到15分钟;

若每小时行9千米,可比预定的时间晚到15分钟;

求从家里到学校的路程有多少千米?

5.一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时50分钟,逆风飞行需要3小时,求两城市间距离。

6.一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的部分由乙单独做,需要几天完成?

7.某工程由甲、乙两队完成,甲队单独完成需16天,乙队单独完成需12天。

如先由甲队做4天,然后两队合做,问再做几天后可完成工程的六分之五?

8.已知某水池有进水管与出水管一根,进水管工作15小时可以将空水池放满,出水管工作24小时可以将满池的水放完;

(1)如果单独打开进水管,每小时可以注入的水占水池的几分之几?

(2)如果单独打开出水管,每小时可以放出的水占水池的几分之几?

(3)如果将两管同时打开,每小时的效果如何?

如何列式?

(4)对于空的水池,如果进水管先打开2小时,再同时打开两管,问注满水池还需要多少时间?

9.有一个水池,用两个水管注水。

如果单开甲管,2小时30分注满水池,如果单开

乙管,5小时注满水池。

①如果甲、乙两管先同时注水20分钟,然后由乙单独注水。

问还需要多少时间才能把

水池注满?

②假设在水池下面安装了排水管丙管,单开丙管3小时可以把一满池水放完。

如果三

管同时开放,多少小时才能把一空池注满水?

10.整理一批图书,由一个人做要40小时完成。

现计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作。

假设这些人的工作效率相同,具体先安排多少人工作。

11.岳池县城某居民小区的水、电、气的价格是:

水每吨1.55元,电每度0.67元,天然气每立方米1.47元.某居民户在2006年11月份支付款67.54元,其中包括用了5吨水、35度电和一些天然气的费用,还包括交给物业管理4.00元的服务费.问该居民户在2006年11月份用子多少立方米天然气?

12.已知:

我市出租车收费标准如下:

乘车里程不超过2公里的一律收费2元;

乘车里程超过2公里的,除了收费2元外超过部分按每公里1.4元计费.

(1)如果有人乘出租车行驶了x公里(x>

2),那么他应付多少车费?

(列代数式,不化简)

(2)某游客乘出租车从客运中心到三星堆,付了车费10.4元,试估算从客运中心到三星堆大约有多少公里?

13.已知购买甲种物品比乙种物品贵5元,某人用款300元买到甲种物品10件和乙种物品若干件,这时,他买到甲、乙物品的总件数,比把这笔款全都购买甲种物品的件数多5件,问甲、乙物品每件各是多少元?

14.两个班组工人,按计划本月应共生产680个零件,实际第一组超额20%、第二组超额15%完成了本月任务,因此比原计划多生产118个零件。

问本月原计划每组各生产多少个零件?

15.某工厂甲、乙、丙三个工人每天生产的零件数,甲和乙的比是3:

4,乙和丙的比是2:

3。

若乙每天所生产的件数比甲和丙两人的和少945件,问每个工人各生产多少件?

16.甲队人数是乙队人数的2倍,从甲队调12人到乙队后,甲队剩下来的人数是原乙队人数的一半还多15人。

求甲、乙两队原有人数各多少人?

17.甲、乙两车间各有工人若干,如果从乙车间调100人到甲车间,那么甲车间的人数是乙车间剩余人数的6倍;

18.包装厂有工人42人,每个工人平均每小时可以生产圆形铁片120片,或长方形铁片80片,将两张圆形铁片与和一张可配套成一个密封圆桶,问如何安排工人生产圆形或长方形铁片能合理地将铁片配套?

19.某部队派出一支有25人组织的小分队参加防汛抗洪斗争,若每人每小时可装泥土18袋或每2人每小时可抬泥土14袋,如何安排好人力,才能使装泥和抬泥密切配合,而正好清场干净。

20.某车间加工机轴和轴承,一个工人每天平均可加工15个机轴或10个轴承。

该车间共有80人,一根机轴和两个轴承配成一套,问应分配多少个工人加工机轴或轴承,才能使每天生产的机轴和轴承正好配套。

21.某厂生产一批西装,每2米布可以裁上衣3件,或裁裤子4条,现有花呢240米,为了使上衣和裤子配套,裁上衣和裤子应该各用花呢多少米?

22.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?

23.学校春游,如果每辆汽车坐45人,则有28人没有上车;

如果每辆坐50人,则空出一辆汽车,并且有一辆车还可以坐12人,问共有多少学生,多少汽车?

24.小明看书若干日,若每日读书32页,尚余31页;

若每日读36页,则最后一日需要读39页,才能读完,求书的页数。

25.小华的爸爸现在的年龄比小华大25岁,8年后小华爸爸的年龄是小华的3倍多5岁,求小华现在的年龄

26.某学校七年级8个班进行足球友谊赛,采用胜一场得3分,平一场得1分,负一场得0分的记分制。

某班与其他7个队各赛1场后,以不败的战绩积17分,那么该班共胜了几场比赛?

27.某印刷厂第三季度印刷了科技书籍50万册,而第四季度印刷了58万册,求季度的增长率是多少?

28.甲、乙两厂去年完成任务的112%和110%,共生产机床4000台,比原来两厂任务之和超产400台,问甲厂原来的生产任务是多少台?

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 考试认证 > 财会金融考试

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1