一元一次方程应用题解题方法与归类Word文件下载.docx
《一元一次方程应用题解题方法与归类Word文件下载.docx》由会员分享,可在线阅读,更多相关《一元一次方程应用题解题方法与归类Word文件下载.docx(8页珍藏版)》请在冰豆网上搜索。
(2)两车同时开出,相背而行多少小时后两车相距600公里?
(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?
(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?
(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?
此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。
故可结合图形分析。
(1)分析:
相遇问题,画图表示为:
等量关系是:
(2)分析:
相背而行,画图表示为:
(3)分析:
等量关系为:
快车所走路程-慢车所走路程+480公里=600公里。
解:
设x小时后两车相距600公里,由题意得,
(4)分析:
追及问题,画图表示为:
快车的路程=慢车走的路程+480公里。
解:
设x小时后快车追上慢车。
由题意得,
(5)分析:
追及问题,等量关系为:
(二)行船问题
流水问题是研究船在流水中的行程问题,因此,又叫行船问题。
流水问题有如下两个基本公式:
顺水速度=船速+水速
(1)
逆水速度=船速-水速
(2)
水速=船速-逆水速度
(3)
船速=逆水速度+水速
(4)
船速=(顺水速度+逆水速度)÷
2(5)
水速=(顺水速度-逆水速度)÷
2
(6)
一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?
(三)工程问题:
工程问题中的三个量及其关系为:
工作总量=工作效率×
工作时间
经常在题目中未给出工作总量时,设工作总量为单位1。
例一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?
分析设工程总量为单位1,等量关系为:
(四)和差倍分问题(生产、做工等各类问题)
1.和、差、倍、分问题:
(1)倍数关系:
通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。
(2)多少关系:
通过关键词语“多、少、和、差、不足、剩余……”来体现。
某车间加工30个零件,甲工人单独做,能按计划完成任务,乙工人单独做能提前一天半完成任务,已知乙工人每天比甲工人多做1个零件,问甲工人每天能做几个零件?
原计划几天完成?
(五)劳力调配问题:
这类问题要搞清人数的变化.
例.1.某厂一车间有64人,二车间有56人。
现因工作需要,要求第一车间人数是第二车间人数的一半。
问需从第一车间调多少人到第二车间?
2.甲、乙两车间各有工人若干,如果从乙车间调100人到甲车间,那么甲车间的人数是乙车间剩余人数的6倍;
如果从甲车间调100人到乙车间,这时两车间的人数相等,求原来甲乙车间的人数。
(六)配套问题:
1.某车间有28名工人生产螺栓和螺母,每人每小时平均能生产螺栓12个或螺母18个,应如何分配生产螺栓和螺母的工人,才能使螺栓和螺母正好配套(一个螺栓配两个螺母)
2.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?
(七)分配问题:
例.学校分配学生住宿,如果每室住8人,还少12个床位,如果每室住9人,则空出两个房间。
求房间的个数和学生的人数。
(八)年龄问题:
甲比乙大15岁,5年前甲的年龄是乙的年龄的两倍,乙现在的年龄是________.
(九)比赛积分问题:
10.某企业对应聘人员进行英语考试,试题由50道选择题组成,评分标准规定:
每道题的答案选对得3分,不选得0分,选错倒扣1分。
已知某人有5道题未作,得了103分,则这个人选错了______道题。
(十)利润赢亏问题
(1)销售问题中常出现的量有:
进价、售价、标价、利润等
(2)有关关系式:
商品利润=商品售价—商品进价=商品标价×
折扣率—商品进价
商品利润率=商品利润/商品进价
商品售价=商品标价×
折扣率
例.一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?
分析:
探究题目中隐含的条件是关键,可直接设出成本为X元
进价
标价
优惠价
利润
x元
8折
(1+40%)x元
80%(1+40%)x
15元
等量关系:
(利润=折扣后价格—进价)折扣后价格-进价=15
设进价为X元,
(十一)储蓄问题
⑴顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率。
利息的20%付利息税
⑵利息=本金×
利率×
期数本息和=本金+利息利息税=利息×
税率(20%)
例.某同学把250元钱存入银行,整存整取,存期为半年。
半年后共得本息和252.7元,求银行半年期的年利率是多少?
(不计利息税)
本息和=本金×
(1+利率)
设半年期的实际利率为x,
(十二)增长率问题:
1.某化肥厂去年生产化肥3200吨,今年计划生产3600吨,今年计划比去年增产%
2.某加工厂有出米率为70%的稻谷加工大米,现在加工大米100公斤,设要这种大米x公斤,则列出的正确的方程是。
。
(十三)数字问题:
(1)要搞清楚数的表示方法:
一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1≤a≤9,0≤b≤9,0≤c≤9)则这个三位数表示为:
100a+10b+c。
(2)数字问题中一些表示:
两个连续整数之间的关系,较大的比较小的大1;
偶数用2n表示,连续的偶数用2n+2或2n—2表示;
奇数用2n+1或2n—1表示。
1.有一个三位数,个位数字为百位数字的2倍,十位数字比百位数字大1,若将此数个位与百位顺序对调(个位变百位)所得的新数比原数的2倍少49,求原数。
(十四)古典数学:
1.100个和尚100个馍,大和尚每人吃两个,小和尚两人吃一个,问有多少大和尚,多少小和尚。
2.有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只?
练习:
1、已知A、B相距60千米,甲位于A处,骑自行车,他的速度是每小时15千米,乙位于B处,开汽车,他的速度是每小时45千米。
(1)若他们同时相向而行,则经几小时他们相遇?
(2)若他们相向而行,小明先骑车0.5小时,问几小时他们相遇?
(3)若他们同时同向而行,则经几小时乙追上甲?
(4)若他们同向而行,甲先骑车1小时以后,问乙经几小时追上甲?
(5)若他们同向而行,甲先骑车1小时以后,发现他的一个重要文件在乙那里,因此掉头去拿,同时乙也开车给甲送去,问甲经几小时和乙碰到?
2、A、B两地相距1200千米。
甲从A地、乙从B地同时出发,相向而行。
甲每分钟行50千米,乙每分钟行70千米。
两人在C处第一次相遇。
问AC之间距离是多少?
如相遇后两人继续前进,分别到达A、B两地后立即返回,在D处第二次相遇。
问CD之间距离是多少?
3.从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲乙两地相距x千米,则列方程为________________。
4.某人从家里骑自行车到学校。
若每小时行15千米,可比预定的时间早到15分钟;
若每小时行9千米,可比预定的时间晚到15分钟;
求从家里到学校的路程有多少千米?
5.一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时50分钟,逆风飞行需要3小时,求两城市间距离。
6.一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的部分由乙单独做,需要几天完成?
7.某工程由甲、乙两队完成,甲队单独完成需16天,乙队单独完成需12天。
如先由甲队做4天,然后两队合做,问再做几天后可完成工程的六分之五?
8.已知某水池有进水管与出水管一根,进水管工作15小时可以将空水池放满,出水管工作24小时可以将满池的水放完;
(1)如果单独打开进水管,每小时可以注入的水占水池的几分之几?
(2)如果单独打开出水管,每小时可以放出的水占水池的几分之几?
(3)如果将两管同时打开,每小时的效果如何?
如何列式?
(4)对于空的水池,如果进水管先打开2小时,再同时打开两管,问注满水池还需要多少时间?
9.有一个水池,用两个水管注水。
如果单开甲管,2小时30分注满水池,如果单开
乙管,5小时注满水池。
①如果甲、乙两管先同时注水20分钟,然后由乙单独注水。
问还需要多少时间才能把
水池注满?
②假设在水池下面安装了排水管丙管,单开丙管3小时可以把一满池水放完。
如果三
管同时开放,多少小时才能把一空池注满水?
10.整理一批图书,由一个人做要40小时完成。
现计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作。
假设这些人的工作效率相同,具体先安排多少人工作。
11.岳池县城某居民小区的水、电、气的价格是:
水每吨1.55元,电每度0.67元,天然气每立方米1.47元.某居民户在2006年11月份支付款67.54元,其中包括用了5吨水、35度电和一些天然气的费用,还包括交给物业管理4.00元的服务费.问该居民户在2006年11月份用子多少立方米天然气?
12.已知:
我市出租车收费标准如下:
乘车里程不超过2公里的一律收费2元;
乘车里程超过2公里的,除了收费2元外超过部分按每公里1.4元计费.
(1)如果有人乘出租车行驶了x公里(x>
2),那么他应付多少车费?
(列代数式,不化简)
(2)某游客乘出租车从客运中心到三星堆,付了车费10.4元,试估算从客运中心到三星堆大约有多少公里?
13.已知购买甲种物品比乙种物品贵5元,某人用款300元买到甲种物品10件和乙种物品若干件,这时,他买到甲、乙物品的总件数,比把这笔款全都购买甲种物品的件数多5件,问甲、乙物品每件各是多少元?
14.两个班组工人,按计划本月应共生产680个零件,实际第一组超额20%、第二组超额15%完成了本月任务,因此比原计划多生产118个零件。
问本月原计划每组各生产多少个零件?
15.某工厂甲、乙、丙三个工人每天生产的零件数,甲和乙的比是3:
4,乙和丙的比是2:
3。
若乙每天所生产的件数比甲和丙两人的和少945件,问每个工人各生产多少件?
16.甲队人数是乙队人数的2倍,从甲队调12人到乙队后,甲队剩下来的人数是原乙队人数的一半还多15人。
求甲、乙两队原有人数各多少人?
17.甲、乙两车间各有工人若干,如果从乙车间调100人到甲车间,那么甲车间的人数是乙车间剩余人数的6倍;
18.包装厂有工人42人,每个工人平均每小时可以生产圆形铁片120片,或长方形铁片80片,将两张圆形铁片与和一张可配套成一个密封圆桶,问如何安排工人生产圆形或长方形铁片能合理地将铁片配套?
19.某部队派出一支有25人组织的小分队参加防汛抗洪斗争,若每人每小时可装泥土18袋或每2人每小时可抬泥土14袋,如何安排好人力,才能使装泥和抬泥密切配合,而正好清场干净。
20.某车间加工机轴和轴承,一个工人每天平均可加工15个机轴或10个轴承。
该车间共有80人,一根机轴和两个轴承配成一套,问应分配多少个工人加工机轴或轴承,才能使每天生产的机轴和轴承正好配套。
21.某厂生产一批西装,每2米布可以裁上衣3件,或裁裤子4条,现有花呢240米,为了使上衣和裤子配套,裁上衣和裤子应该各用花呢多少米?
22.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?
23.学校春游,如果每辆汽车坐45人,则有28人没有上车;
如果每辆坐50人,则空出一辆汽车,并且有一辆车还可以坐12人,问共有多少学生,多少汽车?
24.小明看书若干日,若每日读书32页,尚余31页;
若每日读36页,则最后一日需要读39页,才能读完,求书的页数。
25.小华的爸爸现在的年龄比小华大25岁,8年后小华爸爸的年龄是小华的3倍多5岁,求小华现在的年龄
26.某学校七年级8个班进行足球友谊赛,采用胜一场得3分,平一场得1分,负一场得0分的记分制。
某班与其他7个队各赛1场后,以不败的战绩积17分,那么该班共胜了几场比赛?
27.某印刷厂第三季度印刷了科技书籍50万册,而第四季度印刷了58万册,求季度的增长率是多少?
28.甲、乙两厂去年完成任务的112%和110%,共生产机床4000台,比原来两厂任务之和超产400台,问甲厂原来的生产任务是多少台?