220KV电力系统继电保护和自动装置设计论文Word文档格式.docx

上传人:b****6 文档编号:17215715 上传时间:2022-11-29 格式:DOCX 页数:29 大小:237.78KB
下载 相关 举报
220KV电力系统继电保护和自动装置设计论文Word文档格式.docx_第1页
第1页 / 共29页
220KV电力系统继电保护和自动装置设计论文Word文档格式.docx_第2页
第2页 / 共29页
220KV电力系统继电保护和自动装置设计论文Word文档格式.docx_第3页
第3页 / 共29页
220KV电力系统继电保护和自动装置设计论文Word文档格式.docx_第4页
第4页 / 共29页
220KV电力系统继电保护和自动装置设计论文Word文档格式.docx_第5页
第5页 / 共29页
点击查看更多>>
下载资源
资源描述

220KV电力系统继电保护和自动装置设计论文Word文档格式.docx

《220KV电力系统继电保护和自动装置设计论文Word文档格式.docx》由会员分享,可在线阅读,更多相关《220KV电力系统继电保护和自动装置设计论文Word文档格式.docx(29页珍藏版)》请在冰豆网上搜索。

220KV电力系统继电保护和自动装置设计论文Word文档格式.docx

总结………………………………………………………………………………………28

参考文献…………………………………………………………………………………29

摘要

本设计对220KV电网进行了继电保护和自动装置整定计算,根据本电网的特点和运行要求,在满足继电保护“四性”要求的前提下,求得最佳方案,分别配置了零序、距离、高频以及横差保护,最后对全套保护进行了评价Thedesignofthe220KVpowergridwasrelayprotectionandautomaticdevicesettingcalculation,accordingtothepowergridcharacteristicsandoperationalrequirements,tomeettherelayprotection,"

4"

oftherequirementsunderthepremiseofthebestsolutionobtained,respectively,equippedwithzero-sequence,distance,high-frequencyaswellasthetransversedifferentialprotection,thelastofthefullrangeofprotectionwereevaluated.

前言

 一、概序

电力工业对我国社会主义建设、工农业生产和人民生活的影响很大,因此,提高电力系统运行的可靠性,保证安全发电、供电,是从事电力事业人员的重要任务。

电力系统在运行中可能发生各种故障或出现不正常运行状态,从而在电力系统中引起事故,故障一旦发生,能迅速而有选择性地切除故障元件,是保证电力系统安全运行的最有效方法之一,继电保护装置就能满足这个要求。

继电保护装置是当电力系统中电气设备发生故障或出现不正常工作情况时,作用于断路器使其跳闸或发出某种信号的一种自动装置。

选择保护方式时,希望能全面满足可靠性,选择性,灵敏性和速动性的要求,当同时满足四个基本要求有困难时,根据电力系统的具体悄况,在不影响系统安全运行的前提下,可以降低某一方面的要求。

设计各种电气设备(发电机、变压器、母线和线路等)的保护时,应综合考虑以下情况,即电气设备和电力系统的结构特点和运行特性,故障出现的概率及可能造成的后果,电力系统的近期发展情况,经济上的合理性,国内、外的成熟经验。

二、设计总原则:

本设计以原电力部生产司1979年颁布的《110—220kV电网继电保护和自动装置运行条例》和水利电力出版社1993年颁布的《电力系统继电保护和自动装置整定计算》的有关规定和要求为依据。

同时,根据电网结构和运行要求的不同,在满足继电保护“四性”(速动性、选择性、灵敏性、可靠性)的前提下,求得最佳方案,采用性能比较稳定的新型设备,以适应电力系统快速发展的要求。

第一章电力系统继电保护和自动装盟的配置

第一节线路继电保护配置

保护方式的选择对电力系统的安全运行有直接的影响。

选择保护方式时,在满足继电保护“四性”要求的前提下,应力求采用简单的保护装置来达到系统提出的要求,只有当简单的保护不能满足要求时,才采用较复杂的保护。

电力部颁发的《继电保护和安全自动装置枝术规程》规定,对110~220kV、中性点直接接地电网中的线路,应装置反应接地短路和相间短路的保护。

该规程又规定,电力设备和线路的短路保护应有主保护和后备保护,必要时可再增设辅助保护。

在110~220kV中性点直接接地的电网中,线路的相间短路保护及单相接地短路保护均应动作于断路器使其跳闸。

在下列情况下,应装设全线任何部分短路时均能速动的保护装置:

①根据系统稳定要求有必要时;

②线路发生三相短路故障,使厂用电或重要用户母线电压低于额定电压的60%,且其保护不能无时限和有选择地切除短路故障时;

③若某些线路采用全线速动保护能显着简化电力系统保护,并提高保护的选择性、灵敏性和速动性时。

规程规定,ll0kV线路的后备保护宜采用远后备方式;

220kV线路则宜采用近后备方式,如能实现远后备方式时,则宜采用远后备方式或同时采用远、近后备结合的方式。

220kV线路的保护可按以下原则配置。

对于单侧电源单回路线路,可装设三相多段式电流电压保护作为相间短路的保护。

但若不能满足灵敏度要求,则应装设多段式距离保护。

对于接地短路,宜装设带方向性元件或不带方向性元件的多段式零序电流保护,对某些线路,若装设带方向性接地距离保护可以明显改善整个电力系统接地保护性能时,可装设接地距离保护,并辅之以多段式零序电流保护。

对于双电源单回路线路,可装设多段式距离保护,若不能满足灵敏度和速动性要求时,则应加装高频保护作为主保护,把多段式距离保护作为后备保护。

在正常运行方式下,若保护安装处短路且无时限电流速断保护装置能够动作时,可装设此种保护作为辅助保护。

根据规程规定和系统的具体情况,选择220k/V线路保护时作了如下考虑:

由于本系统允许切除故障的时间为0.ls,为保证系统运行稳定,当220kV输电线路任何地点发生短路故障时,继电保护切除故障线路的时间都必须小于0.ls,因而,凡是不能在0.ls内切除全线路故障的保护装置都不宜作为主保护。

基于这种考虑,对双电源供电的单回路线路和环网内的线路,宜采用高频保护作为主保护。

具体而言,环网内的线路AB、AE、BE,双电源供电线路的CD线、DE线、EF线、FG线、GH线均采用高频保护作为主保护。

后备保护采用距离保护作为相间短路保护,零序电流保护作为接地短路保护,对单侧电源的辐射线路HI线可按线路-变压器组考虑,从而可以采用较简单的保护,因此.对线路扣可选用距离保护作为相间短路保护,零序电流保护作为接地短路保护。

第二节自动重合闸的配置

  在电力系统的故障中,大多数是送电线路特别是架空线路)的故障。

运行经验表明,架空线路故障大都是◇瞬时性”的,在线路被断开以后再进行一次合闸能大大提高供电的可靠性。

为此,在电力系统中采用了自动重合闸(缩写为ZCH)。

即当断路器跳闸以后,这种装置能够自动地将断路器重新合闸。

  在电力系统中采用重合闸的技术经济效果,主要地可归纳如下:

  ①大大提高供电的可靠性,减少线路停电的次数.特别是对单侧电源的单回线路尤为显著;

  ②在高压输电钱路上采用重合闸,可以提高电力系统并列运行的稳定性;

  ③在电网的设计与建设过程中,有些情况下由于考虑重合闸的作用,可以暂缓架设双回线路,以节约投资;

  ④对断路器本身,由于机构不良或继电保护误动作而引起的误跳闸,也能起纠正作用。

  采用重合闸以后,当重合于永久性故障上时,它也将带来一些不利的影响,如:

  ①使电力系统又一次受到故障的冲击;

  ②使断路器的工作条件变得更加严重,因为它要在很短的时间内,连续切断两次短路电流。

  自动重合闸装置应按下列规定装设:

  ①在lkV及以上的架空线路和电缆与架空的混合线路中,当具有断路器时,应装设自动重合闸装置;

  ②旁路断路器和兼作旁路的母线联络断路器或分段断路器,宜装设自动重合闸装置;

  ③低压侧不带电源的降压变压器,应装设自动重合闸装置;

  ④必要时母线可装设自动重合闸装置。

  各种自动重合闸装置中,综合重合闸为较先进的一种。

本设计采用微机保护装置,系统中所有线路均装设综合重合闸。

  综合重合闸的一些基本原则:

①单相接地短路时跳开单相,然后进行单相重合,如重合不成功则跳开三相而不再进行重合。

②各种相间短路时跳开三相,然后进行三相重合,如重合不成功.仍跳开三相,面不再进行重合。

③当选相元件拒绝动作时,应能跳开三相并进行三相重合。

④对于非全相运行中可能误动作的保护,应进行可靠的闭锁,对于在单相接地时可能误动作的相间保护,应有防止单相接地误跳三相的措施。

⑤当一相跳开后重合闸拒绝动作时,为防止线路长期出现非全相运行,应将其他两相自动断开。

  ⑥任意两相的分相跳闸继电器动作后,应联跳第三相,使三相断路器均眺闸。

  ⑦无论单相或三相重合闸,在重合不成功之后,均应考虑能加速切除三相.即实现重合闸后加速。

  ⑧在非全相运行过程中,如又发生另一相或两相的故障,保护应能有选择性地予以切除,上述故障如发生在单相重合闸的脉冲发出以前,则在故障切除后能进行三相重合。

如发生在单相重合闸脉冲发出以后,则切除三相不再进行重合。

  ⑨对空气断路器或液压传动的油断路器,当气压或液压低至不允许实行重合闸时,应将重合闸回路自动闭锁,但如果在重合闸过程中下降到低于允许值时,则应保证重合闸动作的完成。

  在综合重合闸的接线中,应考虑能实现综合重合闸、只进行单相重合闸或三相重合闸以及停用重合闸的各种可能性。

  线路配置:

主保护采用方向高频;

后备保护——距离保护作为相间短路保护,零序电流保护作为接地短路保护。

第三节微机保护装置简介

  本系统采用WXB-15型微机高压线路保护装置。

WXB-l5型系列装置是使用硬件实现的成套微机高压线路保护装置,适用于110kV~500kV各电压等级的输电线路。

主保护为快速方向高频保护。

WXB-15型微机方向高频保护的推出,为同一回路配置相同硬件不同原理的双套主保护提供了可能。

a.本装置硬件特点

①采用了多单片机并行工作的硬件结构,装置设置了四个硬件完全相同的CPU插件,每个插件独立完成一种保护功能。

②采用电压—频率转换原理构成的模数转换器,它具有工作稳定、精度高、接口简单和调试方便等优点。

③跳闸出口回路采用三取二方式,提高了整套保护装置的可靠性。

 ④采用液晶显示、菜单操作、使人—机对话更加简单、灵活。

 ⑤具有RS232接口,可将全站微机保护就地联网。

保护配置示意图如表1所示。

表1保护配置示意图

CPU

CPU1

CPU2

CPU3

CPU4

保护功能

型号

高频

距离

零序

负序

方向

相间

接地

综重

WXB-15

WXB-15A

b.各种保护配置及其特点

①快速方向高频保护

它是由突变量方向元件、零序和负序方向元件完成的快速方向高频保护构成WXB-l5系列微机保护装置的主保护,由CPU1实现保护功能,可选用允许式或闭锁式。

突变量方向元件具有明确的方向性且动作迅速。

②距离保护

  它是由三段式相间距离和接地距离构成的距离保护作为各套保护的基本配置,由CPU,实现。

用于切除出口短路故障的快速I段的距离元件动作时间不大于llms,当系统发生第一次故障时,采用电压记忆保证方向性。

若在振荡期间发生故障,刚采用负序方向元件把关,仅在出口完全三相对称短路时采用偏移特性。

阻抗特性采用四边形特性。

  ③零序保护

  零序保护由CPU3实现,由四段全相运行时的零序保护和两段非全相运行时的不灵敏段零序保护构成。

装置设置了3U0零序保护突变量闭锁元件,以防止CT断线时零序保护误动。

  ④综合重合闸

综合重合闸由CPU.实现,设有单重、三笪、综重和停用四种方式,装置还设有M、N、P端子,以供外部不能选相的保护经本装置综重的选相元件选相跳闸。

本装置各套保护均设有独立的选相元件,由相电流差突变量选相元件及阻抗选相元件来实现。

综重的选相元件仅供外部无选相能力的保护经本装置出口处时使用。

c.主要技术数据

额定数据直流电压:

220V或110V(订货注明)

       交流电压:

相电压:

100/

V

             开口电压:

100V

        交流电流:

5A或lA(订货注明)

        频率:

50Hz

整定范围距离元件:

0.05Ω~99.9Ω

       电流元件:

0.05A~99.9A

  时词元件:

保护跳闸时间:

接地故障为0~l2s;

相间故障为0~4.5s(其他为0~15.9s)。

精确工作范围

   距离元件:

精确工作电压0.5V;

.精确工作电流(0.1~20)In或(0.2~40)In。

   零序方向元件,最小动作电压2V(固定);

最小动作电流<

0.1In。

   突变量方向元件:

最小动作电压4V;

最小动作电流0.3In。

第二章电器主接线设计及主要电气设备的选择

第一节220KV电压级接线方式

220KV有五回线路,预留一回备用,因而220KV母线的接线形式可选用双母线接线形式,双母线分段接线,双母线带旁母(设有专门旁路断路器)的接线形式。

1.双母线特点

双母线接有两组母线,并且可以互为备用。

每一电源和出线的回路,都装有一台断路器,有两组母线隔离开关,可分别与两组母线连接。

两组母线之间的联络,通过母线联络断路器来(简称母联断路器)来QFC来实现。

采用双母线接线,有两组母线后,使运行的可靠性和灵活性大为提高。

其特点有:

(1)供电可靠。

(2)调度灵活。

(3)扩建方便。

我国的各级电压配电装置采用双母线的具体条件如下:

(1)出线带电抗器的6~10KV配电装置;

(2)35~60KV配电装置当出线回数超过8回时,或连接电源较多,负荷较大时,可采用双母线;

(3)110~220KV配电装置当出线回数超过5回时,一般采用双母线。

2.双母线分段优缺点

双母线分段接线比双母线接线的可靠性更高,当一段工作母线发生故障后,在继电保护作用下,分段断路器先自动跳开,而后将故障段母线所连的电源回路的断路器跳开,该段母线所连的出线回路停电;

随后,将故障母线所连的电源回路和出线回路切换备用母线上,即可恢复供电。

这样,只是部分短时停电,而不必全部短期停电。

虽然这种接线具有很高的可靠性和灵活性,但增加了母联断路器和分段断路器的数量,配电装置接资较大。

分段双母线的应用范围:

(1)当配电装置的进线和出线总数为12~16时,在一组母线上设置分段断路器;

(2)当配电装置的进、出线总数达到17回以上时,在两组母线上设置分段断路器。

3.双母线带旁母的特点

带有专门旁路断路器的接线,多装了价高的断路器和隔离开关,增加了投资,然而这对于接入旁路母线的一路回数较多,且对供电可靠性有特殊需要的场合是十分必要的。

不采用专用旁路母线的接线,虽然可以节约建设投资,但是检修出线断路器的倒闸操作十分繁杂,而且对于无论是单母线分段接线还是双母线接线,在检修期间均处于单母线不分段运行状况,极大地降低了可靠性。

单母线带有专用旁路断路器的旁路母线接线极大地提高了可靠性,便这增加了一台旁路断路器的投资。

第二节所用电接线

所用电接线的原则是:

所用电接线应保证对所用负荷可靠和连续供电;

接线能灵活地适应正常、事故、检修等各种运行方式的要求;

设计时还应适当注意其经济性和发展的可能性并积极慎重地采用新技术、新设备,使所用接线具有可行性和先进性;

在设计所用电接线时,还应对所用电的电压等级、中性点接地方式、所用电源及其引接和所用电接线形式等问题进行分析和论证。

所用负荷根据供电重要性可分为三类:

经常连续、短时不经常、连续不经常。

所用电系统接线通常都采用单母线分段接线形式,并多以成套配电装置接受和分配电能。

第三节高压断路器机隔离开关的选择说明

1、变压器220KV侧断路器及隔离开关的选择

最大持续工作电流为

Imax=1.05SN/31/2/UN=1.05×

150/31/2/220=0.41KA

查表可选SW6—220/1200型少油断路器

短路时间:

tk=0.06+0.06+0.06=0.18A

周期分量热效应:

QP=

非周期分量热效应:

QnP=

短路电流的热效应:

Qk=QP+Qnp=

SW6—220/1200型断路器

GW6—220D/1000-50型隔离开关

UN220KV

IN1200A

Inbr21KA

Incl55KA

Itt2212×

4=1764KA2S

ies55KA

IN1000A

——

2、220KV进线断路器及隔离开关选择

最大负荷电流为:

Imax=1.05SN/31/2UN=1.05×

213/31/2/220=0.58KA

第四节母线的选择

1.220KV侧母线的选择

最大工作电流为:

0.41KAJ=1.07

S=410×

2/1.07=766mm2

故可选择2根型号为LGJ—400/20的导线,其载流量为1600A。

2.220KV侧进线的选择

Imax=0.41KA

S=410/1.07=383mm2

故可选择1根型号为LGJ—400/20的导线,其载流量为800A。

第三章系统运行方式的制定和变压器中性接地点的选择

第一节系统运行方式的制定

在选择保护方式及进行整定计算时,都必须考虑系统运行方式变化带来的影响,所选用的保护方式应在各种运行方式下,都能满足选择性和灵敏性的要求。

对过量保护来说,通常都是根据系统最大运行方式来确定保护的整定值,以保证选择性,因为只要在最大运行方式下能保证选择性,在其他运行方式下也一定能保证选择性。

灵敏度的校验应根据最小运行方式来进行,因为只要在最小运行方式下,灵敏度符合要求,在其他运行方式下,灵敏度也一定满足要求,对某些保护(如电流电压联锁速断保护和电流速断保护),在整定计算时还要按正常运行方式来决定动作值或计算灵敏度。

a.最大运行方式

根据系统最大负荷的需要,电力系统中的发电设备都投入运行(或大部分投入运行)且选定的接地中性点全部接地的系统运行方式称为最大运行方式。

对继电保护来说,是短路时通过保护的短路电流最大的运行方式。

b.最小运行方式

根据系统最小负荷,投入与之相适应的发电设备,且系统中性点只有少部分接地的运行方式为最小运行方式。

在有水电厂的系统中,要考虑水电厂运行受水能状态限制的运行方式。

对继电保护来说,是短路时通过保护的短路电流最小的运行方式。

c.正常运行方式

根据系统正常负荷的需要,投入与之相适应数量的发电机、变压器和线路的运行方式称为正常运行方式。

这种运行方式在一年内的运行时间最长。

规定下列运行方式:

I:

电厂A、H、D、B所有机组和变压器均投入运行。

A系统、D系统按最大容量发电,选定的接地中性点全部接地,环网闭环运行。

I1:

在I基础上AE停运;

I2:

在I基础上BE停运:

I3:

在I基础上AB停运;

II:

电厂B、D、H停一半机组,I、II系统按最小容量发电,电厂A停1×

100和1×

50机组,调相机停一半,各站变压器均停一半(按与电厂容量配合原则)闭环运行。

II1:

在II基础上A停运。

线路运行方式如表2所示。

表2线路的运行方式示意

线路名称

最大运行方式

最小运行方式

AB

A侧保护:

I2B侧:

I1

II

AE

A侧:

I2E侧:

I3

BE

B侧:

I1E侧:

CD

I

DE

EF

FG

GH

HI

第二节变压器中性接地点的选择

大接地系统发生接地短路时,零序电流的大小与分布和变压器中性接地点的数目与位置有密切的关系,中性接地点的数目越多,意味着系统零序总阻抗越小,零序电流越大,中性接地点的位置不同,则意味着零序电流的分布不同。

通常,变压器中性接地位置和数目按以下两个原则考虑:

一是使零电流保护装置在系统的各种运行方式下保护范围基本保持不变,且具有足够的灵敏度和可靠性;

二是不使变压器承受危险的过电压,为此,应使变压器中性点接地数目和位置尽可能保持不变。

变压器中性接地点的位置和数目的具体选择原则如下:

a.对单电源系统,线路末端变电站的变压器一般不应接,这样可以提高线路首端零序电流保护的灵敏度。

b.对多电源系统,要求每个电源点都有一个中性点接地,以防接地短路的过电压对变压器产生危害。

c.当一个变电站有多台变压器运行时,应将一部分变压器中性点接地,另一部分不接地。

这样,当接地运行的变压器检修停运时,不接地变压器可以接地运行,从而使接地点的数目和位置相对不变。

d.对有三台以上变压器的220kV或110kV双母线运行的发电厂,一般按两台变压器中性点直接接地运行,并把它们分别接于两组不同母线上,当其中一台中性点接地变压器停用时,将另一台不接地的变压器的中性点直接接地。

系统中HI线路属于单电源供电,其线路末端变压器不接地。

调相机35kV侧变

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > PPT模板 > 自然景观

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1