基于单片机的PWM直流电机调速系统设计论文附电路图程序清单Word格式文档下载.docx

上传人:b****6 文档编号:17116690 上传时间:2022-11-28 格式:DOCX 页数:35 大小:806.03KB
下载 相关 举报
基于单片机的PWM直流电机调速系统设计论文附电路图程序清单Word格式文档下载.docx_第1页
第1页 / 共35页
基于单片机的PWM直流电机调速系统设计论文附电路图程序清单Word格式文档下载.docx_第2页
第2页 / 共35页
基于单片机的PWM直流电机调速系统设计论文附电路图程序清单Word格式文档下载.docx_第3页
第3页 / 共35页
基于单片机的PWM直流电机调速系统设计论文附电路图程序清单Word格式文档下载.docx_第4页
第4页 / 共35页
基于单片机的PWM直流电机调速系统设计论文附电路图程序清单Word格式文档下载.docx_第5页
第5页 / 共35页
点击查看更多>>
下载资源
资源描述

基于单片机的PWM直流电机调速系统设计论文附电路图程序清单Word格式文档下载.docx

《基于单片机的PWM直流电机调速系统设计论文附电路图程序清单Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《基于单片机的PWM直流电机调速系统设计论文附电路图程序清单Word格式文档下载.docx(35页珍藏版)》请在冰豆网上搜索。

基于单片机的PWM直流电机调速系统设计论文附电路图程序清单Word格式文档下载.docx

1.2国内外发展概况

电力电子技术、功率半导体器件的发展对电机控制技术的发展影响极大,它们是密切相关、相互促进的。

近30年来,电力电子技术的迅猛发展,带动和改变着电机控制的面貌和应用。

驱动电动机的控制方案有三种:

工作在通断两个状态的开关控制、相位控制和脉宽调制控制,在单向通用电动机的电子驱动电路中,主要的器件是晶闸管,后来是用相位控制的双向可控硅。

在这以后,这种半控型功率器件一直主宰着电机控制市场。

到70和80年代才先后出现了全控型功率器件GTO晶闸管、GTR、POWER-MOSFET、IGBT和MCT等。

利用这种有自关断能力的器件,取消了原来普通晶闸管系统所必需的换相电路,简化了电路结构,提高了效率,提高了工作频率,降低了噪声,也缩小了电力电子装置的体积和重量。

后来,谐波成分大、功率因数差的相控变流器逐步由斩波器或PWM变流器所代替,明显地扩大了电机控制的调运范围,提高了调速精度,改善了快速性、效率和功率因数。

直流电机脉冲宽度调制(PulseWidthModulation-简称PWM)调速系统产生于70年代中期。

最早用于不可逆、小功率驱动,例如自动跟踪天文望远镜、自动记录仪表等。

近十多年来,由于晶体管器件水平的提高及电路技术的发展,同时又因出现了宽调速永磁直流电机,它们之间的结合促使PWM技术的高速发展,并使电气驱动技术推进到一个新的高度。

在国外,PWM最早是在军事工业以及空间技术中应用。

它以优越的性能,满足那些高速度、高精度随动跟踪系统的需求。

近八、九年来,进一步扩散到民用工业,特别是在机床行业、自动生产线及机器人等领域中广泛应用。

如今,电子技术、计算机技术和电机控制技术相结合的趋势更为明显,促进电机控制技术以更快的速度发展着。

随着市场的发展,客户对电机驱动控制要求越来越高,希望它的功能更强、噪声更低、控制算法更复杂,而可靠性和系统安全操作也摆上了议事日程,同时还要求马达恒速向变速发展,还要符合全球环保法规所要求的严格环境标准。

进入21世纪后,可以预期新的更高性能电力电子器件还会出现,已有的各代电力电子元件还会不断地改进提高。

1.3本文的主要工作

本文设计的直流PWM调速系统采用的是调压调速。

系统主电路采用大功率GTR为开关器件、H桥单极式电路为功率放大电路的结构。

PWM调制部分是在单片机开发平台之上,运用汇编语言编程控制。

由定时器来产生宽度可调的矩形波。

通过调节波形的宽度来控制H电路中的GTR通断时间,以达到调节电机速度的目的。

增加了系统的灵活性和精确性,使整个PWM脉冲的产生过程得到了大大的简化。

本设计以AT89C51单片机为核心,以键盘作为输入达到控制直流电机的启停、速度和方向,完成了基本要求和发挥部分的要求。

在设计中,采用了PWM技术对电机进行控制,通过对占空比的计算达到精确调速的目的。

本文介绍了直流电机的工作原理和数学模型、脉宽调制(PWM)控制原理和H桥电路基本原理设计了驱动电路的总体结构,根据模型,利用PROTEUS软件对各个子电路及整体电路进行了仿真,确保设计的电路能够满足性能指标要求,并给出了仿真结果。

 

第2章直流调速系统概述

调速方法通常有机械的、电气的、液压的、气动的几种,仅就机械与电气调速方法而言,也可采用电气与机械配合的方法来实现速度的调节。

电气调速有许多优点,如可简化机械变速机构,提高传动效率,操作简单,易于获得无极调速,便于实现远距离控制和自动控制,因此在生产机械中广泛采用电气方法调速。

由于直流电动机具有极好的运动性能和控制特性,尽管它不如交流电动机那样结构简单、价格便宜、制造方便、维护容易,但是长期以来,直流调速系统一直占据垄断地位。

所以,直流调速系统仍然是自动调速系统的主要形式。

在我国许多工业部门,如轧钢、矿山采掘、海洋钻探、金属加工、纺织、造纸以及高层建筑等需要高性能可控电力拖动的场合,仍然广泛采用直流调速系统。

而且,直流调速系统在理论上和实践上都比较成熟,从控制技术的角度来看,它又是交流调速系统的基础。

因此,我们先着重讨论直流调速系统。

2.1直流电机的工作原理

直流电动机,多年来一直用作基本的换能器。

绝大多数的直流电动机都是由电磁力形成一种方向不变的转矩而实现连续的旋转运动的。

图2-1为直流电机的物理模型图,其中,固定部分(定子)由磁铁(称为主磁极)和电刷组成;

转动部分(转子)由环形铁心和绕在环形铁心上的绕组组成,定子与转子之间有一气隙。

在电枢铁心上放置了由A和B两根导体连成的电枢线圈,线圈的首端和末端分别连到两个圆弧形的铜片上,此铜片称为换向片。

换向片之间互相绝缘,由换向片构成的整体称为换向器。

换向器固定在转轴上,换向片与转轴之间亦互相绝缘。

在换向片上放置着一对固定不动的电刷B1和B2,当电枢旋转时,电枢线圈通过换向器和电刷与外电路接通。

图2.1直流电机的物理模型图

直流电动机的工作原理如图2-2所示。

给两个电刷加上直流电源,如图2-2(a)所示,有直流电流从电刷A流入,经过线圈abcd,从电刷B流出,根据电磁力定律,载流导体ab和cd收到电磁力的作用,其方向可由左手定则判定,两段导体受到的力形成了一个转矩,使得转子逆时针转动;

如果转子转到图2-2(b)所示的位置,电刷A和换向片2接触,电刷B和换向片1接触,直流电流从电刷A流入,在线圈中的流动方向是dcba,从电刷B流出。

此时载流导体ab和cd受到电磁力的作用方向同样可由左手定则判定,它们产生的转矩仍然使得转子逆时针转动。

电枢一经转动,由于换向器配合电刷对电流的换向作用,直流电流交替地由线圈边ab和cd流入,使线圈边只要处于N极下,其中通过电流的方向总是由电刷A流入的方向,而在S极下时,总是从电刷B流出的方向,这就保证了每个磁极下线圈边中的电流始终是一个方向,这样的结构,就可使电动机连续旋转。

图2.2直流电机原理图

2.2直流电机的调速方法

根据直流电机的基本原理,由感应电势、电磁转矩以及机械特性方程式可知,直流电动机的调速方法有三种:

(1)调节电枢供电电压U。

改变电枢电压主要是从额定电压往下降低电枢电压,从电动机额定转速向下变速,属恒转矩调速方法。

对于要求在一定范围内无级平滑调速的系统来说,这种方法最好。

变化遇到的时间常数较小,能快速响应,但是需要大容量可调直流电源。

(2)改变电动机主磁通

改变磁通可以实现无级平滑调速,但只能减弱磁通进行调速(简称弱磁调速),从电机额定转速向上调速,属恒功率调速方法。

变化时间遇到的时间常数同

变化遇到的相比要大得多,响应速度较慢,但所需电源容量小。

(3)改变电枢回路电阻

在电动机电枢回路外串电阻进行调速的方法,设备简单,操作方便。

但是只能进行有级调速,调速平滑性差,机械特性较软;

空载时几乎没什么调速作用;

还会在调速电阻上消耗大量电能。

改变电阻调速缺点很多,目前很少采用,仅在有些起重机、卷扬机及电车等调速性能要求不高或低速运转时间不长的传动系统中采用。

弱磁调速范围不大,往往是和调压调速配合使用,在额定转速以上作小范围的升速。

因此,自动控制的直流调速系统往往以调压调速为主,必要时把调压调速和弱磁调速两种方法配合起来使用。

调节电枢供电电压或者改变励磁磁通,都需要有专门的可控直流电源,常用的可控直流电源有以下三种:

(1)旋转变流机组。

用交流电动机和直流发电机组成机组,以获得可调的直流电压。

(2)静止可控整流器(简称V-M系统)。

用静止的可控整流器,如汞弧整流器和晶闸管整流装置,产生可调的直流电压。

(3)直流斩波器(脉宽调制变换器)。

用恒定直流电源或不可控整流电源供电,利用直流斩波或脉宽调制的方法产生可调的直流平均电压。

旋转变流系统由交流发电机拖动直流电动机实现变流,由发电机给需要调速的直流电动机供电,调节发电机的励磁电流即可改变其输出电压,从而调节电动机的转速。

改变励磁电流的方向则输出电压的极性和电动机的转向都随着改变,所以G-M系统的可逆运行是很容易实现的。

该系统需要旋转变流机组,至少包含两台与调速电动机容量相当的旋转电机,还要一台励磁发电机,设备多、体积大、费用高、效率低、维护不方便等缺点。

且技术落后,因此搁置不用。

V-M系统是当今直流调速系统的主要形式。

它可以是单相、三相或更多相数,半波、全波、半控、全控等类型,可实现平滑调速。

V-M系统的缺点是晶闸管的单向导电性,它不允许电流反向,给系统的可逆运行造成困难。

它的另一个缺点是运行条件要求高,维护运行麻烦。

最后,当系统处于低速运行时,系统的功率因数很低,并产生较大的谐波电流危害附近的用电设备。

图2.3 晶闸管-电动机调速系统原理框图(V-M系统)

直流斩波器又称直流调压器,是利用开关器件来实现通断控制,将直流电源电压断续加到负载上,通过通、断时间的变化来改变负载上的直流电压平均值,将固定电压的直流电源变成平均值可调的直流电源,亦称直流-直流变换器。

它具有效率高、体积小、重量轻、成本低等优点,现广泛应用于地铁、电力机车、城市无轨电车以及电瓶搬运车等电力牵引设备的变速拖动中。

图2-4为直流斩波器的原理电路和输出电压波型,图中VT代表开关器件。

当开关VT接通时,电源电压U。

加到电动机上;

当VT断开时,直流电源与电动机断开,电动机电枢端电压为零。

如此反复,得电枢端电压波形如图2.4(b)所示。

图2.4直流斩波器原理电路及输出电压波型

(a)原理图  (b)电压波型

采用晶闸管的直流斩波器基本原理与整流电路不同的是,在这里晶闸管不受相位控制,而是工作在开关状态。

当晶闸管被触发导通时,电源电压加到电动机上,当晶闸管关断时,直流电源与电动机断开,电动机经二极管续流,两端电压接近于零。

脉冲宽度调制(PulseWidthModulation),简称PWM。

脉冲周期不变,只改变晶闸管的导通时间,即通过改变脉冲宽度来进行直流调速。

与V-M系统相比,PWM调速系统有下列优点:

(1)由于PWM调速系统的开关频率较高,仅靠电枢电感的滤波作用就可以获得脉动很小的直流电流,电枢电流容易连续,系统的低速运行平稳,调速范围较宽,可达1:

10000左右。

由于电流波形比V-M系统好,在相同的平均电流下,电动机的损耗和发热都比较小。

(2)同样由于开关频率高,若与快速响应的电机相配合,系统可以获得很宽的频带,因此快速响应性能好,动态抗扰能力强。

(3)由于电力电子器件只工作在开关状态,主电路损耗较小,装置效率较高。

脉宽调速系统的主电路采用脉宽调制式变换器,简称PWM变换器。

脉宽调速也可通过单片机控制继电器的闭合来实现,但是驱动能力有限。

目前,受到器件容量的限制,PWM直流调速系统只用于中、小功率的系统

2.3H桥电机驱动的概述

采用PWM进行直流电机调速,其实就是把波形作用于电机驱动电路的使用端,因此有必要对电机驱动电路进行介绍。

图2.5H桥式电机驱动电路

上图所示为一个典型的直流电机控制电路。

电路得名于“H桥式驱动电路”是因为它的形状酷似字母H。

4个三极管组成H的4条垂直腿,而电机就是H中的横杠(上图及随后的两个图都只是示意图,而不是完整的电路图)。

电路中,H桥式电机驱动电路包括4个三极管和一个电机。

要使电机运转,必须导通对角线上的一对三极管。

根据不同三极管对的导通情况,电流可能会从左至右或从右至左流过电机,从而控制电机的转向。

图2.6H桥式驱动电机顺时针转动

如上图所示,当Q1管和Q4管导通时,电流就从电源正极经Q1从左至右穿过电机,然后再经Q4回到电源负极。

按图中电流箭头所示,该流向的电流将驱动电机顺时针转动。

当三极管Q1和Q4导通时,电流将从左至右流过电机,从而驱动电机按特定方向转动(电机周围的箭头指示为顺时针方向)。

当三极管Q2和Q3导通时,电流将从右至左流过电机,从而驱动电机沿另一方向转动(电机周围的箭头表示为逆时针方向)。

图2.7H桥式驱动电机逆时针转动

驱动电机时,保证H桥上两个同侧的三极管不会同时导通非常重要。

如果三极管Q1和Q2同时导通,那么电流就会从正极穿过两个三极管直接回到负极。

此时,电路中除了三极管外没有其他任何负载,因此电路上的电流就可能达到最大值(该电流仅受电源性能限制),甚至烧坏三极管。

第3章系统的硬件设计

在图2.3所示的V-M系统中和图2.4所示的PWM系统中,只通过改变触发或驱动电路的控制电压来改变功率变换电路的输出平均电压,达到调节电动机转速的目的,它们都属于开环控制的调速系统,称为开环调速系统。

在开环调速系统中,控制电压与输出转速之间只有顺向作用而无反向联系,即控制是单方向进行的,输出转速并不影响控制电压,控制电压直接由给定电压产生。

如果生产机械对静差率要求不高,开环调速系统也能实现一定范围内的无级调速,而且开环调速系统结构简单。

3.1系统设计方案论证

(1)电机调速控制模块

方案一:

采用电阻网络或数字电位器调整电动机的分压,从而达到调速的目的。

但是电阻网络只能实现有级调速,而数字电阻的元器件价格比较昂贵。

更主要的问题在于一般电动机的电阻很小,但电流很大;

分压不仅会降低效率,而且实现很困难。

方案二:

采用继电器对电动机的开或关进行控制,通过开关的切换对小车的速度进行调整。

这个方案的优点是电路较为简单,缺点是继电器的响应时间慢、机械结构易损坏、寿命较短、可靠性不高。

方案三:

采用由三极管组成的H型PWM电路。

用单片机控制三极管使之工作在占空比可调的开关状态,精确调整电动机转速。

这种电路由于工作在管子的饱和截止模式下,效率非常高;

H型电路保证了可以简单地实现转速和方向的控制;

电子开关的速度很快,稳定性也极佳,是一种广泛采用的PWM调速技术。

兼于方案三调速特性优良、调整平滑、调速范围广、过载能力大,因此本设计采用方案三。

(2)PWM调速工作方式

双极性工作制。

双极性工作制是在一个脉冲周期内,单片机两控制口各输出一个控制信号,两信号高低电平相反,两信号的高电平时差决定电动机的转向和转速。

单极性工作制。

单极性工作制是单片机控制口一端置低电平,另一端输出PWM信号,两口的输出切换和对PWM的占空比调节决定电动机的转向和转速。

由于单极性工作制电压波开中的交流成分比双极性工作制的小,其电流的最大波动也比双极性工作制的小,所以我们采用了单极性工作制。

(3)PWM调脉宽方式

调脉宽的方式有三种:

定频调宽、定宽调频和调宽调频。

我们采用了定频调宽方式,因为采用这种方式,电动机在运转时比较稳定;

并且在采用单片机产生PWM脉冲的软件实现上比较方便。

(4)PWM软件实现方式

采用定时器做为脉宽控制的定时方式,这一方式产生的脉冲宽度极其精确,误差只在几个us。

采用软件延时方式,这一方式在精度上不及方案一,特别是在引入中断后,将有一定的误差。

故采用方案一。

3.2系统硬件电路设计

硬件电路设计框图如下图所示,硬件电路结构初步设想由以下6部分组成:

时钟电路、复位电路、单片机、驱动电路。

驱动电路部分采用了以GTR为可控开关元件、H桥电路为功率放大电路所构成的电路结构。

控制部分采用汇编语言编程控制,AT89C51芯片的定时器产生PWM脉冲波形,通过调节波形的宽度来控制H电路中的GTR通断时间,便能够实现对电机速度的控制。

根据硬件系统电路设计框图,对各部分模块的原理进行分析,编写个子模块程序,最终将其组合。

图3.1硬件系统电路设计框图

3.3系统各模块设计

3.3.1时钟电路

单片机各功能部件的运行都是以时钟控制信号为基准,有条不紊地一拍一拍地工作,因此时钟频率直接影响单片机的速度,时钟电路的质量也直接影响单片机系统的稳定性。

电路中的电容C1和C2典型值通常选择为30pF左右。

对外接电容的值虽然没有严格的要求,但电容的大小会影响振荡器的频率高低,振荡器的稳定性和起振的快速性,晶振的频率越高则系统的时钟频率也越高,单片机的运行速度也越快。

图3.2时钟电路

本设计采用频率为12MHZ,微调电容C1和C2为30pF的内部时钟方式,电容为瓷片电容。

判断单片机芯片及时钟系统是否正常工作有一个简单的方法,就是用万用表测量单片机晶振引脚(18,19脚)的对地电压,

以正常工作的单片机用数字万用表测量为例:

18脚对地电压约为2.24V,19脚对地电压约为2.09V。

3.3.2复位电路

复位是单片机的初始化操作,其主要作用是把PC初始化为0000H,使单片机从0000H单元开始执行程序。

除了进入系统的正常初始化之外,当由于程序运行出错或操作失误使系统处于死锁状态时,为摆脱困境,也需要按复位键以重新启动。

图3.3复位电路

单片机的复位电路在刚接通电时,刚开始电容是没有电的,电容内的电阻很低,通电后,5V的电通过电阻给电解电容进行充电,电容两端的电会由0V慢慢的升到4V左右(此时间很短一般小于0.3秒),正因为这样,复位脚的电由低电位升到高电位,引起了内部电路的复位工作,这是单片机的上电复位,也叫初始化复位。

当按下复位键时,电容两端放电,电容又回到0V了,于是又进行了一次复位工作,这是手动复位原理。

该电路采用按键手动复位。

按键手动复位为电平方式。

对于怀疑是复位电路故障而不能正常工作的单片机也可以采用模拟复位的方法来判断,单片机正常工作时第9脚对地电压为零,可以用导线短时间和+5V连接一下,模拟一下上电复位,如果单片机能正常工作了,说明这个复位电路有问题,其中电平复位是通过RET端经电阻与电源VCC接通而实现的,当时钟频率适用于12MHZ时,C取100uF,R取10K,为保证可靠复位,在初识化程序中应安排一定的延迟时间。

3.3.3稳压电源电路

电池放电时内阻稳定的增大,电压则稳定的减小,而且接上大功率的负载时电压会瞬时降低,不能用于提供固定的电压,对于各种IC芯片需要的稳定电压,需要专门的稳压器件,或者稳压电路,基本的稳压器有两种:

线性(LDO)和开关(DCDC),其中前者只能降压使用,而前者还可以升压使用而且效率很高。

控制芯片89C51的标准供电电压是5V,可以选择使用线性电压调整芯片稳压,如:

7805:

最大输出电流1.5A,内部过热保护,内部短路电流限制,典型输入电压7~20V,输出电压4.9~5.1V,静态电流典型值4.2mA,压差(输出与输入的差)至少2V。

78L05(电流较小):

最大输出电流100mA,内部过热保护,典型输入电压7~20V,输出电压4.75~5.25V,静态电流典型值3mA。

LM317(电压可调):

输出电流可达1.5A,输出电压1.2V~37V,内部过热保护等。

选用7805,一方面简单;

另一方面比较常用且比较便宜。

LM78系列是美国国家半导体公司的固定输出三端正稳压器集成电路。

我国和世界各大集成电路生产商均有同类产品可供选用,是使用极为广泛的一类串联集成稳压器。

内置过热保护电路,无需外部器件,输出晶体管安全范围保护,内置短路电流限制电路。

对于滤波电容的选择,需要注意整流管的压降。

稳压电源由电源变压器、整流电路、滤波电路和稳压电路组成,

a.整流和滤波电路:

整流作用是将交流电压变换成脉动电压。

滤波电路一般由电容组成,其作用是脉动电压中的大部分纹波加以滤除,以得到较平滑的直流电压。

b.稳压电路:

由于得到的输出电压受负载、输入电压和温度的影响不稳定,为了得到更为稳定电压添加了稳压电路,从而得到稳定的电压。

图3.4稳压电源电路

三端集成稳压器LM7805正常工作时,输入、输出电压差2~3V。

C1为输入稳定电容,其作用是减小纹波、消振、抑制高频和脉冲干扰,C1一般为0.1~0.47μf。

C2为输出稳定电容,其作用是改善负载的瞬态响应,C2一般为1μF。

使用三端稳压器时注意一定要加散热器,否则是不能工作到额定电流。

二极管IN4007用来卸掉C2上的储存电能,防止反向击穿LM7805。

查相关资料该芯片的最大承受电流为0.1A,因此输入端必须界限流电阻R1,R1=(12*0.9-5)/0.1=58Ω,取近似值,选用70Ω的电阻。

1.此电源的缺点

1.1此电源是线性稳压电路,所有有其特有的内部功率损耗大,全部压降均转换为热量损失了,效率低.所以散热问题要特别注意。

1.2由于核心的元件7805的工作速度不太高,所以对于输入电压或者负载电流的急剧变化的响应慢。

2.电源的优点

2.1电路简单,稳定,调试方便(几乎不用调试)。

2.2价格便宜,适合于对成本要求苛刻的产品。

2.3电路中几乎没有产生高频或者低频辐射信号的元件,工作频率低,易于控制。

3.3.4信号输入电路

独立式按键就是各按键相互独立,每个按键各接入一根输入线,一根输入线上的按键工作状态不会影响其他输入线上的工作状态。

因此,通过检测输入线的电平状态可以很容易判断哪个按键按下了。

独立式按键电路配置灵活,软件简单。

但每个按键需要占用一个输入口线,在按键数量较多时,需要较多的输入口线且电路结构复杂,故此种键盘适用于按键较少或操作速度较高的场合。

消除键抖动。

一般按键在按下的时候有抖动的问题,即键的簧片在按下时会有轻微的弹跳,需经过一个短暂的时间才会可靠地接触。

若在簧片抖动时进行扫描就可能得出不正确的结果。

因此,在程序中要考虑防抖动的问题。

最简单的办法是在检测到有键按下时,等待(延迟)一段时间再进行“行扫描”,延迟时间为10~20ms。

这可通过调用子程序来解决,当系统中有显示子程序时,调用几次显示子程序也能同时达到消除抖动的目的。

图3.5控制输入电路

本文采用查询工作方式,即直接在主程序中插入键盘检测子程序,主程序每执行一次则键盘检测子程序被执行一次,对键盘进行检测一次,如果把没有键

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 初中教育 > 政史地

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1