频率选择表面HFSS报告Word文件下载.docx

上传人:b****6 文档编号:17091687 上传时间:2022-11-28 格式:DOCX 页数:18 大小:1.33MB
下载 相关 举报
频率选择表面HFSS报告Word文件下载.docx_第1页
第1页 / 共18页
频率选择表面HFSS报告Word文件下载.docx_第2页
第2页 / 共18页
频率选择表面HFSS报告Word文件下载.docx_第3页
第3页 / 共18页
频率选择表面HFSS报告Word文件下载.docx_第4页
第4页 / 共18页
频率选择表面HFSS报告Word文件下载.docx_第5页
第5页 / 共18页
点击查看更多>>
下载资源
资源描述

频率选择表面HFSS报告Word文件下载.docx

《频率选择表面HFSS报告Word文件下载.docx》由会员分享,可在线阅读,更多相关《频率选择表面HFSS报告Word文件下载.docx(18页珍藏版)》请在冰豆网上搜索。

频率选择表面HFSS报告Word文件下载.docx

如圆环,矩形环和六角环形等。

环单元是制造高质量的斜入射FSS的首选形式。

(3)不同形状的贴片。

(4)上述图形的组合。

图5-3-4给出了四种常用谐振单元,其中图(a)、(c)属于孔径型,图(b)、(d)属于

贴片型。

规则的FSS单元图形有利于电磁模型的建立,如圆形、矩形单元等。

但是有一些图形不能归结为上述的类型,并且往往这些复杂的图形能够提供更好的性能,比如随入射角的变化,可以得到稳定的频率响应,宽带宽和小的带间隔等。

一些不规则的图形单元也可以在多频段上工作。

这就需要设计者按照工程需求选择所需要的FSS单元形状。

必须强调的是,无论贴片型还是孔径型FSS,在实际应用中需要有衬底支撑,介质衬底的性质对FSS特性有很大的影响,单层及多层介质衬底可以改善FSS的特性,因此在实际设计中必须考虑介质效应。

5.3.3HFSS软件的仿真实现

本例利用HFSS软件设计一个带阻型频率选择表面,FSS的单元结构示意图如图5-3-1所示,仿真模型图如图5-3-5所示,频率选择表面的基本单元位于整个模型的最中间,一个厚度为介质板六倍的空气腔包住基本单元,并设有两组主从边界。

选择介电常量εr=2.2的介质作为介质基板,厚度h=10.16mm,边长a=4mm。

频率选择表面单元为环形,外半径Rout=3.7471mm,内半径Rin=3.1471mm。

通过调整FSS单元贴片的内半径和介质基板的边长,使FSS的谐振频率在10GHz。

本例中先介绍了如何在HFSS中实现对FSS的建模,然后对贴片单元尺寸进行优化使其得到要求的谐振频率,最后生成S参数和传输系数的仿真结果。

1.创建工程

(1)运行HFSS软件后,自动创建一个新工程。

在工程列表中自动加入一个新项目,默认名为HFSSDesign1。

同时,在工程管理区的右侧出现3D模型窗口。

在工程树中选择HFSSDesign1,点击右键,选择Rename选项,将设计命名为FSS。

(2)由主菜单选择File→Saveas,保存在目标文件夹内,命名为FSS。

2.设置求解类型

有主菜单选HFSS→SolutionType,在弹出的对话框窗口选择DrivenModal项,如图5-3-6所示。

3.设置单位

有主菜单选择Modeler→Units,在SetModelUnits对话框中选择mm项,如图5-3-7所示。

4.创建模型

1)

绘制介质板

(1)在主菜单选择Draw→Box火灾工具栏中点击按钮,绘制一个长方体。

(2)在坐标输入栏中输入起始点的坐标:

X:

-4,Y:

-4,Z:

-5.08,按回车键结束输入。

(3)在坐标输入栏中输入长、宽、高:

dX:

8,dY:

8,dZ:

10.16,按回车键结束输入。

(4)在属性(Property)窗口中选择Attribute标签页,将Name项改为Substrate,Transparent项改为0.8。

(5)点击Material选项后面的按钮,在弹出窗口的Materials标签页下,点击右下角的AddMaterials按钮。

在弹出的窗口中,将MaterialName改为Material1,将第一行中的Value的值改为2.2,点击OK按钮确定,在点击确定按钮,如图5-3-8所示。

设置完毕后,按下Ctrl+D键,将介质板适中显示,如图5-3-9所示。

2)绘制FSS单元

(1)在菜单栏中点击Draw→Circle,绘制一个圆形。

0,Y:

0,Z:

0,按回车键结束输入。

(3)在坐标输入栏输入长、宽、高:

3.7471,dY:

0,dZ:

(4)在属性(Property)窗口中选择Attribute标签页,将Name项修改为Ring。

(5)点击Color后面的Edit按钮,将颜色设置为黑色,点击OK确定,如图5-3-10所示。

(6)选定Substrate,在工具栏上点击,介质板暂时不可见。

(7)在菜单栏中点击Draw→Circle,在绘制一个圆形。

(8)在坐标输入栏中输入起始点的坐标:

(9)在坐标输入栏中输入长、宽、高:

3.1471,dY:

0,dZ:

(10)在属性(Property)窗口中选择Attribute标签页,将Name项修改为RingOut。

如图5-3-11所示。

(11)

同时选择Ring和RingOut后,在菜单栏中点击Modeler→Boolean→Substract,在Substract窗口作如图5-3-12的设置,点击OK按钮结束设置。

在工具栏上点击按钮,勾选Substrate后的复选框选项,得到模型如图5-3-13所示。

(12)点击选择圆环Ring,单击右键,在下拉菜单中选择AssignBoundary→PerfectE,将Ring设置为理想导体。

3)

绘制空气腔

(1)点击工具栏中按钮,绘制一个长方体。

-4,Y:

-4,Z:

-31,按回车键结束输入。

(3)在坐标输入兰输入长、宽、高:

62,按回车键结束输入。

(4)

在属性(Property)窗口中选择Attribute标签页,将Name项修改为Air,Transparent项修改为0.8,如图5-3-14所示。

5.设置主从边界

主从边界条件可以模拟平面周期结构,这种边界条件强制使从边界上每点的电场与主边界上相应点的电场以一相位差相匹配。

与对称边界不同,电场不必与这些边界垂直或相切。

只需要满足在两个边界上的场具有相同的振幅和方向(或者相同的幅度和相反的方向)即可。

建立匹配的主从边界时,要遵循以下原则:

主从边界只能定义在平面,可以是2D和3D物体表面;

一个边界上的几何结构必须与其他边界上的几何结构相匹配。

例如,如果主边界是矩形表面,则从边界也必须是同样大小的矩形表面。

要建立一个主或从边界表面,必须指定坐标系来说明所选表面所处的平面。

当HFSS是两边界匹配时,相应的两个坐标系也必须互相匹配。

如果不匹配,HFSS就会对旋转从边界来使之与主边界匹配。

这样操作时,定义了从边界的表面也随之旋转。

相对于定义的坐标系,两个表面并没有同一位置,就会出现错误信息。

以图5-3-15为例。

要在坐标系内匹配主边界,相应的从边界就必须逆时针旋转90°

旋转之后,就得到图5-3-16。

两个表面不一致时网格就不匹配,就导致了错误信息的出现。

而且,定义的U轴和V轴之间的夹角对于主和从边界要一致。

1)第一对主从边界的设置

(1)在绘图窗口空白处点击右键,选择SelectFaces。

(2)点选空气腔上平行于YOZ的任意一个面,点击右键后出现下拉菜单,选择AssignBoundary→Master。

(3)在弹出的对话框中,Name项默认为Master1。

(4)CoordinateSystem项下,UVector后的下拉菜单选择NewVector,然后沿介质块在该面上的一条边画一条积分线。

不勾选VVector后的复选框。

(5)旋转模型后选择另一个平行面,点击右键后出现下拉菜单,选择AssignBoundary→Slave。

(6)弹出对话框,Name项默认为Slave1,Master项选择Master1。

(7)CoordinateSystem项下,UVector后的下拉菜单选择NewVector,然后沿介质块在该面上的一条边画一条积分线。

软件自动勾选了V后的复选框。

点击下一步。

(8)此处我们设计的是垂直入射情况,ScanAngles都使用默认的0°

点击完成,如图5-3-17所示。

2)第二对主从边界的设置

(1)点选空气腔上平行于YOZ的任意一个面,点击右键后出现下拉菜单,选择AssignBoundary→Master。

(2)在弹出的对话框中,Name项默认为Master2。

(3)CoordinateSystem项下,UVector后的下拉菜单选择NewVector,然后沿介质块在该面上的一条边画一条积分线。

(4)旋转模型后选择另一个平行面,点击右键后出现下拉菜单,选择AssignBoundary→Slave。

(5)弹出对话框,Name项默认为Slave2,Master项选择Master2。

(6)CoordinateSystem项下,UVector后的下拉菜单选择NewVector,然后沿介质块在该面上的一条边画一条积分线。

(7)点击下一步,点击完成,如图5-3-18所示完成第二对主从边界的设置。

6.

设置Floquet端口

1)上表面Floquet端口的设置

(1)选取空气腔的上表面,单击右键,在下拉菜单中选择AssignExcitation→FloquetPort。

(2)在弹出的窗口中,General标签页下,Name项默认为FloquetPort1.LatticeCoordinateSystem项中,A后的下拉菜单中选择NewVector,回到绘图窗口,掩盖面上一条边做一条积分线,做好后旁边自动标记字母a。

B后的下拉菜单中选择NewVector,同样做一条积分线,做好后旁边自动标记字母b,如图5-3-19所示。

(3)

PhaseDelays标签页下,因为本例中我们仿真分析的是比较简单的垂直入射情况,所以ScanAngles选默认值:

0deg。

(4)ModeSetup标签页下,Numberof填2,即表示选择两个模式,点击下一步。

[注意]对于斜入射的情况,当

(5-3-1)

(5-3-2)

时,只有m=n=0的主模能够传播,而对于其他情况,高次模则能够传播。

此时,需要使用ModesCalculator,如图5-3-20所示,在弹出窗口中的设置要与FloquetPort窗口中其它标签页的设置一致。

(5)勾选AffectsRefinement下的两个复选框,点击下一步,点击完成。

2)下表面的Floquet端口的设置

(1)选取空气腔的下表面,单击右键,在下拉菜单中选择AssignExcitation→FloquetPort。

(2)

在弹出的窗口中,Name项默认为FloquetPort2.

(3)LattcieCoordinateSystem项,A和B后的下拉菜单都选择Defined,然后点击下一步,最后点击完成。

如图5-3-21所示。

7.

设置优化变量

在操作历史树中将原有尺寸设置成已定义的工程变量值。

1)添加工程变量

(1)在菜单栏中点击Project→projectVariable。

(2)在ProjectVariable标签页中选择Value。

(3)点击Add添加工程变量$RingIn,其值设为3.1471mm。

[注意]定义工程变量时,在变量名称前一定要冠以符号$,变量的值一定要带上单位,如图5-3-22所示。

继续添加工程变量:

$AirBox:

4mm。

2)设置优化变量

在操作历史树中将原有尺寸设置为已定义的工程变量值。

(1)如图5-3-22所示,在操作历史树中展开Substrate。

(2)双击CreatBox,在弹出的如图5-3-24所示的对话窗口中将原尺寸改为:

Position:

−$AirBox,−$AirBox,−5.08mm

XSize:

2*$AirBox

Size:

(3)展开Air,双击CreatBox,在弹出的如图5-3-25所示的对话窗口中将原尺寸改为:

−$AirBox,−$AirBox,−31mm

YSize:

(4)展开Ring,进而展开Subtract中的Circle2,如图5-3-23所示,双击CreatCircle,在弹出的对话框中作如下修改(图5-3-26):

Radius:

$RingIn

8.求解设置

为该问题设置求解频率及扫频范围。

1)设置求解频率

(1)在菜单栏中点击HFSS→AnalysisSetup→AddSolutionSetup。

(2)在求解设置窗口中作如下设置:

SolutionFrequency:

10GHz

MaximumNumberofPasses:

6

MaximumDeltaSPerPass:

0.02

(3)点击OK确定。

2)设置频率

(1)在菜单栏中点击HFSS→AnalysisSetup→AddFrequencySweep。

(2)SweepName选择Setup1,点击OK确定。

(3)在扫频窗口作如下设置:

SweepType:

Interpolating

FrequencySetupType:

LinearStep

Start:

5GHz

Stop:

15GHz

StepSize:

0.1GHz

MaxSolutions:

100

ErrorTolerance:

0.2%

(4)点击OK确定

9.求解该工程

在菜单栏中点击HFSS→Analyze。

10.尺寸优化

(1)在菜单栏中点击Project→ProjectVariables,在对话框中选择Optimization,选中待优化的变量$RingIn和$AirBox,如图5-3-27所示。

将优化变量的范围分别设置为[2.5mm,3.74mm]和[3.75mm,5mm]。

(2)在菜单栏中点击HFSS→Results→OutputVariables。

添加输出变量PowerConversion。

在Name项填入PowerConversion,在Expression项填入(mag(S(FloquetPort2:

1,FloquetPort1:

1)))^2,点击Add按钮添加。

点击Done确认退出窗口。

(3)在菜单栏中点击HFSS→OptimetricsAnalysis→AddOptimization。

在Goals标签页中点击SetupCalculation,在Category下选择OutputVariables,点击AddCalculation按钮添加。

(4)如图5-3-28所示,在Goals标签页下设置PowerConversion的Goal为[0.01]。

(5)在菜单栏中点击HFSS→Analyze,进行优化设计,最后得到模型尺寸为$RingIn=3.040976828mm,$AirBox=3.860629552mm。

5.3.4仿真结果的分析和讨论

1.S参数

1)生成S参数图

(1)在工程树中右键单击Results,选择CreatModalSolutionDataReport后在其下拉菜单中选择RectangularPlot。

(2)在弹出对话框中如图5-3-29所示,进行如下设置:

Category:

SParameter

Quantity:

按住Ctrl键选择S(FloquetPort1:

1)和S(FloquetPort2:

Function:

dB

(3)点击NewReport添加S参数结果图,如图5-3-30所示。

2)分析和讨论

由S参数图我们可以看出,反射系数在10GHz处出现谐振点,表明该FSS单元在其中心频率10GHz附近具有滤波特性。

2.传输系数图

生成结果图

(2)在弹出对话框中进行如下设置:

OutputVariables

PowerConversion

None

点击NewReport添加,生成如图5-3-31所示的结果图。

对比图5-3-31,可以看出例子设计的FSS但愿可以作为一个带阻滤波器,它阻碍通过其谐振频率10GHz的波,但可以通过高于和低于10GHz的波。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 初中教育 > 政史地

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1