TTC统一航天测控普及Word格式.docx

上传人:b****3 文档编号:16971357 上传时间:2022-11-27 格式:DOCX 页数:18 大小:348.46KB
下载 相关 举报
TTC统一航天测控普及Word格式.docx_第1页
第1页 / 共18页
TTC统一航天测控普及Word格式.docx_第2页
第2页 / 共18页
TTC统一航天测控普及Word格式.docx_第3页
第3页 / 共18页
TTC统一航天测控普及Word格式.docx_第4页
第4页 / 共18页
TTC统一航天测控普及Word格式.docx_第5页
第5页 / 共18页
点击查看更多>>
下载资源
资源描述

TTC统一航天测控普及Word格式.docx

《TTC统一航天测控普及Word格式.docx》由会员分享,可在线阅读,更多相关《TTC统一航天测控普及Word格式.docx(18页珍藏版)》请在冰豆网上搜索。

TTC统一航天测控普及Word格式.docx

作为各种电子设备和通信网络的中间设备,沟通

各个系统之间的信息,以实现指挥调度。

3航天测控网编辑

各种地面系统分别安装在适当地理位置的若干测控站(包括必要的测量船和测控飞机)和一个测控中心内,通过通信网络相互联接而构成整体的航天测控系统(见图),或称航天测控网。

4总体设计编辑

航天测控系统总体设计属于电子系统工程问题。

对整个系统来说,首先考虑的是航天任务的要求,可以针对某一个任务,也可以兼顾多个任务,从较长远的发展要求来设计。

航天测控系统的中心问题是从地面和航天器整体出发,实现信息获取,即将航天器的飞行和工作数据发回地面,并用计算机进行计算、决策和实时反馈来控制航天器飞行的轨道和姿态。

5总体设计中必须解决的问题编辑

—因此,在总体设计中必须解决的问题有:

①全系统所要具备的功能和实现这

些功能的手段;

②测控站布局的合理性;

③控制的适时性和灵活性;

④各种设备的性能、速度和精度;

⑤长期工作的可靠性;

⑥最低的投资和最短的建成时间。

6电子测控系统编辑

跟踪测量、遥测和遥控系统是整个测控系统的基本部分。

电子测控系统的优点是可以对航天器全天候跟踪,而且有较好的灵活性和足够的精度。

从系统工程的角度来看,对航天器跟踪测量所得的数据,经过计算,可给出弹道、轨道或位置的信息;

而遥测所提供的数据,经过处理、分析可给出航天器的状态信息;

它们都是系统中反馈回路的重要信息源。

遥控则是控制系统中的执行机构。

电子测量和控制系统的地面部分,必须与装在航天器上的电子设备相配合才能完成测控任务。

对于测量,航天器上必须有相应的信标机或应答机,它们发回地面跟踪和测速用的射频信号,应答机还发回测距信息。

对于遥测,航天器上必须有检测各种参数的传感器和发送这些参数的射频发射机。

对于遥控,航天器上

必须有指令接收机。

因此,航天器上的和地面的两部分电子设备在设计时应该结合起来统一考虑。

为了提高测量的精确性和扩大信息的传输量,测控设备所用的无线电频率大部分已经提高到微波波段。

为了减少航天器上电子设备的重量、体积,特别是要减少天线的数目,将各种测控功能适当地综合在一个统一的射频载波上是一个重要的发展。

这种系统称为微波统一测控系统。

中国研制的微波统一测控系统,灵

活多用,可进行单站或多站测量。

7计算系统编辑

计算系统是整个测控系统的核心。

各个测控站和各个设备都可用自己的计算机来处理本站和本机的数据,但大数据量的计算以及根据计算结果进行分析和做出控制决策等,一般都要集中到测控中心来做。

因此,在测控中心应装有容量大、速度高的计算机,并能双工工作以保证可靠性。

在主机前端则可采用较小的计算机来进行数据的编辑、选择和预处理。

主机的计算结果,一方面输入显示系统加以显示,以便指挥控制人员能据此作出决策;

另一方面也可以由计算机在人的监视下进行自动分析、决策,直接选择控制参数,通过遥控信道发出指令。

这些计算、分析、人-机对话和决策,都须依靠计算机软件系统来实现。

因此,编制适当的软件,经过演练确认其正确性,定型后并在实际中使用,是测控系统在航天器发射和管理中的一项十分重要的工作。

8航天电子测控系统的新发展编辑

从地面上对航天器跟踪测量和控制,往往需要在很大范围内布置相当数目的测控站,疆域较小的国家不具备这种条件。

为了解决这一困难,国际间的协作十

分必要,为此需要使各国测控系统的频率和体制统一起来。

70年代初期,美国发

射“阿波罗”号登月载人飞船时,开始应用S波段(2吉赫频段)统一系统并经实践证明了这种系统的优越性。

现在美国的地面测控网已逐步改建,采用S波段统

一系统作为主要的测控手段。

西欧和日本也采用了频段相同而体制类似的系统,并且已应用到不同类型的卫星和航天器上。

各国的测控频率和体制的统一,有利于互相利用。

这是航天测控系统的发展趋势。

对于较低轨道的卫星或其他航天器来说,一个地面测控站的跟踪范围毕竟有限,而设置测控站的数目又受到种种限制,不能无限增加。

为了扩大跟踪范围,将测控站搬到同步定点卫星上,从35800公里的高空来观测低轨道卫星是解决这

一困难的一个办法。

1983年5月美国利用航天飞机发射的一颗跟踪与数据中继卫星(TDRS)是实现这个设想的第一步。

两颗定点在赤道上空,经度相隔约140°

的跟踪与数据中继卫星和一个相应的地面控制接收站组成跟踪与数据中继卫星系统(TDRSS)o这种系统将能对多颗低轨卫星进行全球性不间断的跟踪、测控和

数据中继。

从测控的角度来看,系统的工作原理和微波统一测控系统类似。

测控

点站仍设在地面(但减少到一个),而两颗跟踪与数据中继卫星实际上是起了将测控信号转接和扩大到全球范围的作用。

9展望编辑

随着应用卫星的发展,特别是导航卫星、高分辨率遥感卫星、载人飞船的会合和对接、航天飞机以及行星际和更远距离的航行,对航天测控系统提出了更高的要求:

①提高卫星测轨、定位和姿态测定的精度;

②提高卫星或飞船机动控制的实时性和精确性;

③特远距离时的跟踪测量和高速数据传输。

更精密的光学和电子测控系统,更大容量和更高运算速率的计算机,更高精确度的时间标准和更高效率的通信体制等,都是为解决上述问题需要研究的课题。

航天[编辑]

2000年质子号运载火箭载运星辰号服务舱前往国际空间站

航天指与研究和探索外层空间有关的领域,利用太空科技来以太空飞行器来进入外太空。

按航天器探索、开发和利用的对象划分,航天包括环绕地球的运行、飞往月球的航行、飞往行星及其卫星的航行、星际航行(行星际航行、恒星际航行)。

按航天器与探索、开发和利用对象的关系或位置划分,航天飞行方式包括飞越(从天

体近旁飞过)、绕飞(环绕天体飞行)、着陆(降落在天体上面)、返回(脱离天体、重返地球)。

执行军事任务(具有军事目的)的航天活动,称为军用航天;

执行科学研究、经济开发、工业生产等民用任务(具有非军事目的)的航天活动,称为民用航天;

执行商业合同任务(以营利为目的)的航天活动,成为商业航天。

有人驾驶航天器的航天活动,称为载人航天;

没有人驾驶航天器的航天活动,称为不载人航天。

航天的主要目的是太空探索,其商业用途主要是卫星通讯,也有近来兴起的太空旅游。

其他非商用的用途包括星空观测,间谍卫星和地球观测。

[隐藏]

1历史

2航天的开始阶段

o

2.1发射

2.2到达太空

2.3到达太空的其他方法

3航天到达太空阶段

7.1

航天器灾难

7.2

失重

7.3

辐射

7.4

维生系统

7.5

太空天气

8相关条目

9参考文献

9.1

出处

9.2

书目

 

历史[编辑]

康斯坦丁•齐奥尔科夫斯基,火箭专家和宇航先驱

可行的太空旅行的方案可以追溯到康斯坦丁・齐奥尔科夫斯基,他最著名的作品--"

Mcc孔egoBaHueMupOBbixnpocTpaHCTBpeaKTUBHbiMunpu6opaMu"

(《利用反作用力设施探索宇宙空间》)发表于1903年,他最早从理论上论证多级火箭可以克服地心引力进入太空⑴-,但当时这份理论著作没有在苏联以外产生广泛影响。

航天成为可行工程始于1919年,罗伯特•戈达德发表了论文《到达超高空的方法》其中把拉伐尔喷管应用到液态火箭发动机,其足够的动力使星际旅行成为可能。

他还在实验室中证明了火箭可以在真空空间工作,但当时没有得到普遍认同。

篇论文对后来航天工程的关键人物极具影响,其中包括.赫尔曼•奥伯特和沃纳•冯•布劳恩—。

1944年6月,德国的V-2火箭在一次飞行测试达到189km的高度,这是第一枚到达太空的火箭且1957年10月4日,苏联发射史泼尼克1号,它是第一颗进入地球轨道的人造卫星。

1961年4月12日,东方一号承载苏联宇航员尤里・加加林进行环绕地球轨道一次,这是首次载人航天。

东方一号是由谢尔盖•科罗廖夫与克里姆•阿利耶维奇•克里莫夫所设计的[3]-

火箭目前依然是到达太空的唯一实际手段。

•超音速燃烧冲压发动机—等其他非火箭运载技术仍远低于轨道速度。

航天的开始阶段[编辑]

发射[编辑]

阿波罗4号发射前的在发射台上的SaturnV

火箭的发射通常在发射场上,场区内有整套试验设施与设备,用以装配、储存、检测和发射航天器,测量飞行轨道,发送控制指令,接收和处理遥测信息。

-[4]-

出于噪音和安全方面的原因,发射场选在远离人类居住的地方。

航天发射场多数由导弹实验靶场改造而成,他们的组成设备和功能基本相同。

发射通常受一定的发射窗口限制。

这些窗口取决于天体的位置和相对于发射场的轨道。

影响最大的往往是地球的自转。

一经发射,轨道通常在一个相对固定的平面上,该平面与地球轴成一固定角度,而地球在这个轨道上旋转。

发射台是一个用于发送飞行器的固定的结构。

通常包括发射塔和火焰沟槽。

并由竖立,燃料,稳定运载火箭等装置包围。

到达太空[编辑]

国际航空联合会定义在100公里的高度为卡门线,高于此线就是太空。

火箭是目前到达太空唯一的可行手段。

常规飞机发动机不能达到缺乏氧气的空

间。

火箭发动机排出推进剂提供前向推力,产生足够的△V(速度变化)进入轨道。

针对不同应用的推进系统包括:

一次性使用运载系统

*Singlestagetoorbit

对于载人发射系统通常会安装发射逃逸系统,用于在发生灾难性故障的情况下让宇航员逃生。

到达太空的其他方法[编辑]

航天到达太空阶段[编辑]

航天飞行的速度要求[编辑]

发射于1959年的月球1号是首个达到第一宇宙速度的人造物体•⑹图为博物馆复制品照片

主条目:

宇宙速度一

宇宙速度是物体从地球出发,在天体的重力场中运动,四个较有代表性的初始速度的统称。

航天器按其任务的不同,需要达到这四个宇宙速度的其中一个。

第一宇宙速度[编辑]

第一宇宙速度又称为环绕速度,是指在地球上发射的物体绕地球飞行作圆周运动

所需的最小初始速度。

若在150千米的飞行高度上,其环绕速度为7.8千米/秒。

第二宇宙速度[编辑]

第二宇宙速度,亦即地球的逃逸速度,是指在地球上发射的物体摆脱地球引力束缚,飞离地球所需的最小初始速度。

若航天器已到达近地轨道的高度,航天器的脱离速度约为10.9千米/秒。

第三宇宙速度[编辑]

第三宇宙速度,亦即太阳的逃逸速度,是指在地球上发射的物体摆脱太阳引力束缚,飞出太阳系所需的最小初始速度。

本来,在地球轨道上,要脱离太阳引力所需的初始速度为42.1千米/秒,但地球绕太阳公转时令地面所有物体已具有29.8千米/秒的初始速度,故此若沿地球公转方向发射,只需在脱离地球引力以外额外再加上12.3千米/秒的速度。

第四宇宙速度[编辑]

第四宇宙速度是指在地球上发射的物体摆脱银河系引力束缚,飞出银河系所需的最小初始速度。

但由于人们尚未知道银河系的准确大小与质量,因此只能粗略估算,其数值在525千米/秒以上。

而实际上,仍然没有航天器能够达到这个速度。

航天动力学[编辑]

航天动力学

航天动力学是研究航天器和运载器在飞行中所受的力及其在力作用下的运动的学科,其中主要是对引力和推进作用的研究。

航天动力学的研究可以使航天器不

需要额外的推进剂而准时到达目的地。

非火箭轨道推进方法包括太阳帆、磁化

帆,和使用重力弹弓效应

航天返回阶段[编辑]

航天器再入时的电离气体痕迹

由于在目前的技术条件下返回大气层时航天器的速度极高,因此非破坏性返回的

过程一般需要有特殊的措施来保护航天器避免受到气动力加热和震动、冲击等损害。

再入原理由HarryJulianAllen提出.而从原理中显示,钝形隔热板效率最佳,因为返回式航天器的摩擦热与阻力系数成反比,即阻力愈大,热负荷愈低。

着陆[编辑]

航天器下降到约15km的高空,速度已减少到亚音速。

为了保证安全着陆,需要采取进一步的减速措施。

弹道式再入航天器常采取降落伞作为着陆减速手段。

回收[编辑]

由C-119飞机回收发现者14

着陆成功后的航天器,其乘员和货物可以回收。

在某些情况下,航天器降落时就可以回收:

当航天器还在降落伞下降落,它可以通过特殊设计的飞机回收。

这种半空回收技术用于间谍卫星的回收。

STS-119组员访问后的国际空间站.

载人航天是由宇航员执行的太空探索,可以由单人或多人执行。

载人航天需使用载人航天器进行。

历史上首次载人航天任务是发射于1961年4月12日的东方1号,苏联宇航员尤里•加加林在环绕地球轨道一周后安全返回地球。

1963年6月16日,苏联宇航员瓦莲京娜•捷列什科娃_执行东方6号任务时成为了第一名进入太空的女性。

1966年,美国的双子星11号创造了最高地球轨道记录,飞行高度达1374千米。

发射和修理哈勃太空望远镜的两次航天飞机任务也曾达到600千米左右的飞行高度。

2003年,中国的神舟五号宇航员杨利伟,成功围绕地球十四圈,中国为第三个成功进行载人航天的国家。

迄今为止,载人航天飞行目标在地球轨道之外的任务只限于月球,尽管月球本身也是地球的卫星。

第一次去月球的载人任务阿波罗8号中,三位宇航员曾进入月球轨道。

阿波罗10号第二次环绕了月球,在月球轨道进行了登月航天器的测试。

人造卫星[编辑]

人造卫星

人造卫星是由人类建造的航天器的一种,也是数量最多的一种。

人造卫星以太空飞行载具如运载火箭、航天飞机等发射到太空中,像天然卫星一样环绕地球或其它行星运行。

太空探索[编辑]

太空探索

太空探索是指以物理手段探索地球以外物体以及探索太空时涉及到的任何技术,科学政策。

人类历史上最著名并最有影响力的一次太空探索是在-冷战美苏太空竞赛期间第一个人类成功踏上月球。

太空旅游[编辑]

太空旅游

太空旅游指非以执行任务(例如进行实验或工作)为目的,而搭乘太空船参与太空飞行。

在苏联解体后,由于太空船的操作成本极大,同时要付给哈萨克拜科努尔太空中心地租与使用场地费,俄国为筹措经费,开放了民间金钱赞助,报酬即为可让赞助者搭乘太空船进入太空,因此大多数太空游客为支付大笔费用的一亿万富翁。

由于NASA勺太空任务仅供国际专门科研之用,故现今太空旅游仍以俄国为主。

航天器与发射系统[编辑]主条目:

航天器_

阿波罗登月舱在月球表面

航天器是指在地球大气层以外的宇宙空间中,基本按照天体力学的规律运动的各种飞行器[8]。

航天器与自然天体的不同之处在于其可以受控改变其运行轨道或进行回收。

常见的航天器包括人造卫星、空间探测器、航天飞机和各种空间站等。

航天器要完成其任务必须具备发射场、运载器、航天测控系统、数据采集系统、用户站台以及回收设施等的配合。

航天器推进[编辑]主条目:

航天器推进

太空飞行器推进是任何加速.太空飞行器和人造卫星的方法,目前已知具有许多方式,每一种方式都有弱点与优点。

目前许多推进方式是采用.火箭。

一次性使用运载系统[编辑]主条目:

一次性使用运载系统使用一次性的运载火箭把载荷发射入太空。

顾名思义,一次性的运载火箭火箭只使用一次,火箭的各部件发射后不会被回收并用于其他的发射。

由于现今的运载火箭都是一次性的,所以一次性的运载火箭也可以简称为运载火箭。

运载火箭一般由多节火箭串联而成,在火箭飞行逐级使用并逐级抛弃。

可重复使用的发射系统[编辑]

挑战[编辑]

航天器灾难[编辑]

为了让航天器进入轨道,所有的运载火箭都包含了大量的燃料,因此存在能量突

然大量释放的风险,而且可能会造成灾难性的影响。

像德尔塔-2运载火箭在1997年1月17日在起飞后13秒爆炸[9],当时16公里外的商店橱窗有因爆炸影响而破裂[10]。

航天器内是个较可以预期的环境,但仍然有意外的卸压或设备(尤其是新开发导入的设备)失效的可能性。

2004年时国际太空安全促进协会在荷兰成立,目的在促进在航天系统安全上的跨国合作及科学研究[11]。

失重[编辑]主条目:

国际太空站上的太空人失重

在微重力的环境中(例如在地球轨道的太空船中),太空人会体验到.失重的情形'

短暂的失重会造成航天微重力综合症,是因为前庭系统的紊乱引起的恶心症状<长时的失重会造成一些健康上的问题,最明显的是骨质流失,而且可能有部份是永久性的,微重力也会造成肌肉及心血管组织的显著机能-失调。

辐射[编辑]

只要离开大气层后,就会有来自范艾伦辐射带、太阳光及宇宙线的辐射。

在远离地球之后,大阳的闪焰会在数分钟达到致命的辐射剂量,而且在暴露在宇宙线十年或更长时间下,癌症的可能性会显著的增加[12]0

维生系统[编辑]

生命保障系统

在载人航天飞行器中,生命保障系统是指一组可以让人在外太空可以生存的设备。

NASA会用“环境控制及生命保障系统”的词语,或是其简称ECLS睐描述

载人航天飞行器中的生命保障系统[13]。

生命保障系统会提供:

水、空气及食物,也会让体温维持在正常的温度,让身体的压强在可承受的范围内,并且处理人体的排泄物。

生命保障系统也可能要隔绝像辐射及陨石微粒等外来影响。

生命保障系统中的设备都属于生命攸关系统,需依照安全工程的技术来设计及构建。

太空天气[编辑]

极光和“发现号”,1991年5月。

太空天气在一些领域对太空探索和发展有深远的影响。

不断变化的地磁条件可以

造成大气密度的急剧改变,造成低地球轨道上太空船高度的堕落。

由于太阳活动增强产生的地磁风暴可能导致航天飞行器上的感应器暂时失常,或是干扰到飞行器上的电子仪器。

此外,磁暴也会影响到在高纬度上常态飞行的飞机,使受到的辐射总量增加[14]。

很好的了解太空环境状况对设计太空船的遮罩和载人太空船的生命支援系统也是很重要的。

相关条目[编辑]

航天主题

太阳系主题

鼻阳系主

航空航天工程

空间、太空、太空探索、航天飞行器、神舟号飞船、神舟五号

航天发射中心、航天飞行器一

导弹、火箭、人造卫星、空间探测器、宇宙飞船、载人宇宙飞船、航天飞机、航天站、宇宙服(宇航服)、宇宙速度一

导航、惯性导航一

中国航天、NASA俄罗斯联邦航天局_、欧洲空间局、日本宇宙航空研究开发机构、印度航天一

中国航天测控站列表[编辑]

本条目需要补充更多来源。

(2014年3月5日)

请协助添加多方面可靠来源以改善这篇条目,无法查证的内容可能会被提出异议而移除。

航天测控站是航天测控网的组成部分,包括固定站和活动站两种类型。

测控站可以根据测控区域的需求分布在世界各地。

中国从1967年开始发展航天测控网⑴-,目前已经建成多个航天测控站。

1陆上测控站

o1.1中华人民共和国境内

o1.2中华人民共和国境外

*

2海上测量船

3参考文献

4参见

陆上测控站[编辑]

中华人民共和国境内[编辑]

甘肃省

东风站

陕西省

渭南站

山东省

青岛站

福建省

厦门站

新疆维吾尔自治区

喀什站

主场站

机动测控站

和田站

中华人民共和国境外[编辑]

国家

站名

备注

巴基

斯坦

卡拉奇站

纳米

比亚

纳米比亚站

■肯尼亚

马林迪站

Ml澳大利亚

当加拉站u

「智利

圣地亚哥站电

V1法国

奥赛盖尔站

11法国

凯尔盖朗站

法属南部领地

E3巴西

阿尔坎特拉站

海上测量船[编辑]主条目:

远望号

•远望一号

•远望二号

•远望三号

•远望四号(已退役)[4]-

•远望五号

•远望六号

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 小学教育 > 语文

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1