matlab期末大作业Word文档下载推荐.docx
《matlab期末大作业Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《matlab期末大作业Word文档下载推荐.docx(20页珍藏版)》请在冰豆网上搜索。
CompareandConclusion19
Afterdesign20
Appendix22
Reference22
1.Preface:
Withthehighpaceofhumancivilizationdevelopment,thecarhasbeenacommontoolsforpeople.However,someproblemsalsoariseinsuchtendency.Amongmanyproblems,thevelocitycontrolseemstoasignificantchallenge.
Inaautomatedhighwaysystem,usingthevelocitycontrolsystemtomaintainthespeedofthecarcaneffectivelyreducethepotentialdangerofdrivingacarandalsowillbringmuchconveniencetodrivers.
Thisarticleaimsatthediscussionaboutvelocitycontrolsystemandthecompensatortoamelioratethepreferenceoftheplant,thusmeetsthecomplicateddemandsfrompeople.ThediscussionisbasedonthesimulationofMATLAB.
Keyword:
PIcontroller,rootlocus
2.TheDesignIntroduction:
Figure2-1automatedhighwaysystem
Thefigureshowsanautomatedhighwaysystem,andaccordingtocomputingandsimulation,avelocitycontrolsystemformaintainingthevelocityifthetwoautomobilesisdevelopedasbelow.
Figure2-2velocitycontrolsystem
Theinput,R(s),isthedesiredrelativevelocitybetweenthetwovehicles.Ourdesigngoalistodevelopacontrollerthatcanmaintainthevehiclesinseveralspecificationbelow.
DS1Zerosteady-stateerrortoastepinput
DS2Steady-stateerrorduetoarampinputoflessthan25%oftheinputmagnitude.
DS3Percentovershootlessthan5%toastepinput.
DS4Settlingtimelessthan1.5secondstoastepinput(usinga2%criteriontoestablishsettlingtime)
3.RelativeKnowledge:
Controllerhereactuallyservesasacompensator,andwehavesomecompensatorsfordifferentspecificationandsystem.
Table3-1Compensators
compensator
Appilicablecondition
Adjuststeadyerror
Addthetypeofsystem,thusadjustthesteadyerror
PIcontroller:
adjuststeadyerrorandaddanzero
Increasethephasemargin
Increasethephasemargin,keepthesteadyerrorunchanged
PIDcontroller:
balanceallthepreference(steadypreference,aswellasdynamicpreference)
4.DesignandAnalysis:
4.1Specificationanalysis
Accordingtotherelativeknowledgeabove,ImayconsideraPI
controllertocompensate------------
.
Ds1:
zerosteadyerrortostepresponse:
Tointroduceanintegralparttoaddthesystemtypeisenough.
Ds2:
Steady-stateerrorduetoarampinputoflessthan25%ofthe
inputmagnitude.
Ds3:
overshootlessthan5%toastepresponse.
AccordingtoDS3andDS4,wecandrawthedesiredregion
toplace
ourclose-looppoles.(astheshadowindicate)
Figure4-1Desiredregionforlocatingthedominantpoles
Afteraddingthecontroller,thesystemtransferfunctionbecome:
ThecorrespondingRoutharrayis:
1Kp+ab
a+bKi
0
Ki
Forstability,wehave
Foranotherconsideration,weneedtoputthebreakpointof
rootlocustotheshadowareainFigure4-1toensurethedominant
polesplacedontheleftofs=-2.66line.
Inall,thespecificationisequaltoaPIcontrollerwithlimitbelow.
4.2Designprocess:
4.2.1Controllerverification:
Attheverybeginning,wetakethesystemwithG(s)=
andthecontroller(providedbythebook)with
foraninitialdiscussion.
Figure4-2stepresponse(a=2,b=8,Kp=33,Ki=66)
Figure4-3rampresponse(a=2,b=8,Kp=33,Ki=66)
Fromfigure4-2,wecanseethattheovershootis4.75%,andthesettlingtimeis1.04swithzeroerrortothestepinput.
Fromfigure4-3,itisclearthattherampsteady-stateerrorisalittlelessthan25%.
Thus,thecontrollerwith
completelymeetsthespecification.
4.2.2furtheranalysis:
Fornextprocedure,Iwillhavesomemorespecificdiscussionabouttheapplicablerangeofthiscontrollertoseehowmuchcanaandbvaryyetallowthesystemtoremainstable.
Wedon’tchangetheparameterofthecontroller,andinserttheKi=66,Kp=33intotheinequalityandgetthis:
Ifwesupposethesystemtobeaminimumphasesystem,a,b>
0,thusitiseasytoverifythe3rdinequality.Now,wedrawtoseetherangeofaandb.
Figure4-4therangeofa,bforcontroller(Kp=33,Ki=66)
Actually,theshadeareacannotcompletelymeetsthespecification,fortheconstraintconditionsrepresentedinthe3inequalityisnotenough,weneedtodrawtherootlocusforacertainsystem(aandb)tolocatetheactuallimitforcontroller.
However,thistaskisratherdifficult,inaway,the4variables(a,b,Ki,Kp)allvaryintermsofothers’change.Thuswecanapproximatelylocatetherangeofaandbfromthefigureabove.
4.2.3Alternativesdiscussion:
Accordingtoinequality
Therangeofaandbbearsomerelationwiththeinequalitybelow:
Basingourassumptionontherangeinthepreviousdiscussion,wecaneasilyseethatinordertoincreasetherange,wecanincreaseKianddecreasetheratioofKitoKp.
Thus,Iadjusttheparameterto
Figure4-5therangeofa,bforcontroller(Kp=64,Ki=80)
Asthefigureindicate,(therangebetweendottedlinesreferstothepreviouscontroller,whiletherangebetweenredlinesreferstothenewalternatives),therangeincreaseasweexpect.
Nextstep,wemaykeepthesystemofG(s)=
fixed,anddiscussthedifferentcompensatingeffectofdifferentPIparameter.
Whencarefullycheckingthecontroller,wemayfindthatthecontrolleractuallyaddazero(-Ki/Kp),anintegralpartandagainpart,sowecanonlychangethezeroanddrawthelocusrootandexaminethestepresponseandrampresponse.
:
Figure4-6therootlocus(
)
Usingrlocfind,wefindthemaximumKp=34.8740
Sowechoose3groupsofparameter([35,52.5],[30.45],[25,37.5])toexaminethereponse
Figure4-7thestepresponse(
It’sclearthatthestepresponsepreferenceisnotsatisfyingwithtoolongsettlingtime
Figure4-8therootlocus(
Usingrlocfind,wefindthemaximumKp=34.3673
Sowechoose3groupsofparametertoexaminetheresponseandrampresponse.
Figure4-9thestepresponse(
Figure4-10therampresponse(
Figure4-11therootlocus(
Usingrlocfind,wefindthemaximumKp=31.47
Similarly,wechoose3groupsofparametertoexaminetheresponseandrampresponse.
Figure4-12thestepresponse(
Virtually,theovershoot(Kp=30,Ki=75)doesn’tmeetthespecificationasweexpect.Iguess,thatmaycomefromtheeffectofzero(-2.5),thus,gobacktothestepresponseof
duetotheeliminationbetweenzero(-2)andpoles,thusthepreferenceiswithinourexpectation.
Figure4-13therampresponse(
5.CompareandConclusion
Mainlyfromthestepresponseandrampresponse,itcanbeconcludedthat,inacertainratioofKitoKp,thelargerKpbringssmallerrampresponseerror,aswellaslargerrangeofapplicablesystem.Nevertheless,thelargerKpmeansworsestepresponsepreference(includingovershootandsettlingtime).Thiscontradictionisrathercommonincontrolsystem.
Inall,togetthemostsatisfyingpreference,weneedtobalancealltheparametertomakeacompromise,butnotasingleparameter.
Fromwhatwearetalkingabout,wefindthecontrollerprovidedbythebook(Kp=33,Ki=66)maybeoneofthebestcontrollerincomparisontosomedegree,withsatisfyingstepresponseandrampresponsepreference,aswellasawiderrangeforthevariationofaandb,further,ituseazero(s=-2)totransferthe3rdordersystemto2ndordersystem,indoingso,wemayeliminatesomeunexpectedinfluencefromthezero.
Thecontrollerverifiedabove(inFigure4-9andFigure4-10)withKp=34,Kp=68maybealittlebetter,butonlyalittle,anditdoesn’tleavesomemargin.
6.AfterDesign
这是一次艰难,且漫长的大作业,连续一个星期,每天忙到晚上3点,总算完成了这个设计,至少我自己是很满意的。
其实与其说是大作业,不如说就是一次课程设计。
运用所学的自控知识,加上matlab操作知识,去探究了一下用根轨迹法去研究校正的问题。
这次选题很多,有超前滞后校正,有状态反馈校正,但这两种在前不久的自控实验中都已经做过,所以这一次挑战一下自己,选择这个根轨迹法来做。
一开始觉得这个选题并不难,而且书上也要代码等,但真正做起来,发现很有点棘手。
由于题目中要求研究某种控制器对某些系统的校正能力,相当于PI控制器中的Kp,Ki和系统中的两个极点全是变化的。
一段时间琢磨和不断仿真试验后,我决定换个角度去思考,分别控制系统不变和控制器不变,去研究控制器的控制范围,以及各种控制器对一个特定系统的矫正效果,最后在通过比较分析论证。
题目要求找到一个适用范围更广的控制器,但经过我不断摸索,证明出课后题中所给控制器已经是最优解了,再优的也只是提高一点点的极限值,虽然我没有找到更优解了,但这个过程中我充分了解到设计和探究的步骤,不管结果是否正确,我在这个探究过程中收获颇多。
7.
holdoff
clg
n=[1];
d=[11016];
tau=2.5;
nc=[1tau];
dc=[10];
[num,den]=series(n,d,nc,dc);
rlocus(num,den)
holdon
plot([-2.66-2.66],[-2020]);
z=0.69;
plot([0-20*z],[020*sqrt(1-z^2)],[0-20*z],[0-20*sqrt(1-z^2)])
grid
rlocfind(num,den)
%drawtherootlocus%
Appendix:
a=[0:
0.01:
20];
b=6.57-a;
c=[0:
0.10:
20]
d=20./c
plot(a,b,c,d)
%plottheinequality%
Kp=30;
Ki=75;
nc=[KpKi];
[numa,dena]=series(n,d,nc,dc);
g=tf(numa,dena)
f=feedback(g,1);
h=f*tf([1],[1,0]);
step(h),grid
holdon;
t=[0:
100];
plot(t,t,'
r-'
);
%rampresponse%
[na,da]=cloop(numa,dena);
step(na,da),grid
%stepresponse%
8.Reference:
1)RobertH.Bishop,ModernControlSystemAnalysisAndDesignUsingMATLABAndSimulink,Beijing:
TsinghuaUniversityPress,2003,12
2)胡寿松,《自动控制原理》(第五版),北京:
科学出版社,2007,6
3)胡寿松,《自动控制原理简明教程》(第四版简明版),北京:
科学出版社,2003,4
4)张德丰,《MatlabSimulink建模与仿真》,北京,电子工业出版社,2009,3