两位数乘两位数教学设计Word文档格式.docx
《两位数乘两位数教学设计Word文档格式.docx》由会员分享,可在线阅读,更多相关《两位数乘两位数教学设计Word文档格式.docx(7页珍藏版)》请在冰豆网上搜索。
笔者在教学实践中,发现学生头脑中“原生态”的点子图是这样的:
经过统计,40名学生探究“14×
12”时使用的方法情况如下表学生“14×
12”计算方法统计表。
从上表中,我们不难发现:
可以使用点子图与算法建立联系的学生只有1人,占2.5%。
经过课后对学生的访谈,空白的12位同学表示没有想到借用点子图帮助计算,无法将图与算法建立联系。
一部分用横式做出答案的同学认为我已经会了,画点子图比较麻烦。
当被要求进一步在点子图中画出算法时,也是无从着手,或者图与算式分离。
由以上调查可知,学生在学习过程中,不会主动利用点子图帮助计算。
事实上,用图表征出计算过程的确是比较难的任务。
点子图在笔算两位数乘两位数的作用可以体现在释义、明理、求联三个方面,设计教学如下。
三、教学目标:
1.经历两位数乘两位数的计算过程,理解算理,掌握两位数乘两位数的计算方法。
2.利用点子图,帮助学生理解乘法的意义,理解算理,培养学生的几何直观。
3.在解决问题的过程中,体会数学与生活的联系。
四、教学过程:
一.整体呈现点子图,解释乘法的意义。
1.课件出示点子图。
你看到了什么?
2.在点子图中表示出4╳5呢?
说说你的想法。
(学生思考后回答)
生1:
我可以在点子图中画一个4,再画一个乘号,再画5,就是4×
5。
生2:
每行4个,有这样的5行,就是5个4;
生3:
也可以每行5个,有这样的4行,就是5个4;
教师结合课件展示圈的过程。
3.小结:
是的,4╳5的意思就是4个5或者5个4。
4.在点子图中表示14╳10。
想一想:
在你的脑子中画一画。
5.根据图写算式。
如果老师这样画,可以用哪个算式来表示呢?
生:
14╳12,因为是每行14个,有这样的12行,就可以用14╳12来表示。
【设计意图】点子图在开头整体呈现,引导学生用点子图解释乘法算式的意义,既可以让学生直观感知点子图,也可以唤起学生对乘法意义的理解。
通过想一想,说一说,画一画这几个小环节,有利于学生从计算的本源着手,探究计算方法。
二.充分利用点子图,明晰计算的算理。
1.选择生活情境,理解算式的意义。
(1)14×
12除了表示老师画的图,还可以解决下面哪个问题?
问题一:
王老师买来语文书14本,数学书12本,一共买了多少本?
问题二:
每套书有14本,王老师买了12套。
一共有几本?
(2)学生说明理由。
我选问题二,因为问题一只表示两个部分合在一起,问题二才是求12个14是多少。
(3)教师结合课件逐个出示:
在这里一个点子就代表一本书。
每行14个点子的意思就是每套书有14本。
一共有几本呢?
你能估计一下吗?
【设计意图】从选择情景到出示点子,目的是帮助学生理解乘法算式的意义,帮助学生在点子图和乘法算式以及情境之间建立通道,为学生从乘法意义出发探究算法埋下伏笔。
2.根据点子图,探索多样的算法。
(1)14╳12到底等于几呢?
请大家试着在点子图中圈一圈,算一算。
(2)学生独立思考,完成练习。
(3)反馈:
学生利用点子图解释自己的算法。
方法1:
我把12拆成10和2,10个14是140,2个14是28,合起来是168。
方法2:
也可以把12拆成4×
3,3个14师42,4个42是168。
方法3:
列竖式计算。
2.结合点子图,理解竖式计算的算理。
(1)掌握竖式的算法。
师:
这种列竖式计算的方法很重要。
谁能说说他是怎么算的?
先用个位的2乘14,结果是28;
用十位的1乘14,结果是140,合起来是168。
(教师板书计算的过程。
)
(2)解释140末尾0省略的原因。
用十位上的数去乘时,表示的总是几个十,所以末位的0可以不写,直接把积的末位写在十位就可以。
那么这里的14其实表示的是什么呢?
14个十。
(3)理解数字的意义。
同学们,那你们能不能把列竖式计算的过程在点子图中表示出来呢?
结合题意,说说28和140的意思。
(学生在点子图中表示14╳2和14╳10,结合情境解释28和140。
28表示
(2)套书有(28)本。
140表示(10)套书有(140)本。
【设计意图】从用点子图圈一圈,写自己喜欢的算法到将竖式计算的过程在点子图中表示出来,结合点子图说数字的含义,三个环节充分利用点子图这一几何直观,帮助学生理解算理,掌握算法。
由图到式,由图到义,点子图的工具性作用突显,学生的算理逐渐明晰。
三.巧妙借助点子图,寻求算法的联系。
1.回顾计算的过程。
我们是怎么解决14╳12这个问题的?
结合课件演示。
2.比较算法的联系。
比较这些算法,他们有什么一样的地方?
方法1和方法3是一样的。
竖式里的28其实就是横式里的14×
2=28,竖式里的140就是横式里的14×
10=140。
(教师根据学生回答板书,在横式和竖式之间建立联系。
3.探讨“分”的好处。
这些算法都是在分。
你们是怎么想到分的?
因为“分”可以把两位数乘两位数转化成两位数乘一位数或两位数乘整十数。
通过“分”,可以把新的数学知识转化成我们以前学过的知识。
4.揭题并板书:
笔算乘法。
【设计意图】通过比较算法,结合点子图理解共同之处在于“分”,分的目的在于“转化”,即把旧知转化为新知,从而沟通知识之间的联系。
四.练习提升。
1.挑战一星级。
列竖式计算:
23×
13=33×
31=
学生独立完成,反馈易错点。
2.挑战二星级。
汉堡每个22元,301班有47人,张老师想给每人买一个,带800元够吗?
需要带多少钱?
学生估计,说明理由。
这里的154指什么?
880呢?
3.挑战三星级。
用喜欢的方法计算:
25×
28=28×
15=
五.课堂小结。
教学反思:
理想的计算教学是在理解算理的基础上掌握算法。
与表内乘法相比较,两位数乘一位数与两位数乘两位数的计算要复杂得多,不仅要关注计算的顺序,还要理解部分积的位值,但算理理解的基础仍然是乘法的意义。
本课运用点子图,从最基本的乘法意义入手,使抽象的乘法算式在点子图中获得直观的解释,使学生探索乘法算法时有了“根部生长的力量”。
释义是基础,明理是目的。
用点子图解释算法,本质上是运用图示直观解释运算的思考过程。
学生展示的两种算法,分别联系了乘法的分配律与结合律,点子图的直观清晰地解释了运算的算理,算法在直观图示中也是一目了然。
两位数乘两位数算理的核心是乘法分配律,运算的结果是两个部分积之和,竖式计算教学的重点是理解两个部分积的意义与位值。
以图示直观为中介,沟通了横式计算与竖式计算之间的联系,这对于增进学生对乘法计算的算理理解,熟练地掌握算法,都具有一定的价值。