第三章一元一次方程Word格式文档下载.docx

上传人:b****6 文档编号:16525684 上传时间:2022-11-24 格式:DOCX 页数:102 大小:285.30KB
下载 相关 举报
第三章一元一次方程Word格式文档下载.docx_第1页
第1页 / 共102页
第三章一元一次方程Word格式文档下载.docx_第2页
第2页 / 共102页
第三章一元一次方程Word格式文档下载.docx_第3页
第3页 / 共102页
第三章一元一次方程Word格式文档下载.docx_第4页
第4页 / 共102页
第三章一元一次方程Word格式文档下载.docx_第5页
第5页 / 共102页
点击查看更多>>
下载资源
资源描述

第三章一元一次方程Word格式文档下载.docx

《第三章一元一次方程Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《第三章一元一次方程Word格式文档下载.docx(102页珍藏版)》请在冰豆网上搜索。

第三章一元一次方程Word格式文档下载.docx

根据车速相等,你能列出方程吗?

教师根据学生的回答情况进行分析,如:

依据“王家庄至青山路段的车速=王家庄至秀水路段的车速”可列方程:

依据“王家庄至青山路段的车速=青山至秀水路段的车速”

可列方程:

3、给出方程的概念,介绍等式、等式的左边、等式的右边等概念.

4、归纳列方程解决实际问题的两个步骤:

(1)用字母表示问题中的未知数(通常用x,y,z等字母);

(2)根据问题中的相等关系,列出方程.

渗透列方程解决实际问题的思考程序。

理解题意是寻找相等的关系的前提。

考虑到学生寻找关系的难度,教师在此处有意加以引导。

教师要根据课堂教学的情况灵活处理,不能把学生的思维硬往教材上套。

举一反三讨论交流

1、比较列算式和列方程两种方法的特点.建议用小组讨论的方式进行,可以把学生分成两部分分别归纳两种方法的优缺点,也可以每个小组同时讨论两种方法的优缺点,然后向全班汇报.

列算式:

只用已知数,表示计算程序,依据是间题中的数量关系;

列方程:

可用未知数,表示相等关系,依据是问题中的等量关系。

2、思考:

对于上面的问题,你还能列出其他方程吗?

如果能,你依据的是哪个相等关系?

建议按以下的顺序进行:

(1)学生独立思考;

(2)小组合作交流;

(3)全班交流.

如果直接设元,还可列方程:

如果设王家庄到青山的路程为x千米,那么可以列方程:

依据各路段的车速相等,也可以先求出汽车到达翠湖的时刻:

,再列出方程

=60

说明:

要求出王家庄到翠湖的路程,只要解出方程中的x即可,我们在以后几节课中再来学习.

通过比较能使学生学会到从算式到方程是数学的进步。

问题的开放性有利于培养学生思维的发散性。

这样安排的目的是所有的学生都有独立思考的时间和合作交流的时间。

初步应用

课堂练习

1、例题(补充):

根据下列条件,列出关于x的方程:

(1)x与18的和等于54;

(2)27与x的差的一半等于x的4倍.

建议:

本例题可以先让学生尝试解答,然后教师点评.

解:

(1)x+18=54;

(2)

(27-x)=4x.

列出方程后教师说明:

“4x"

表示4与x的积,当乘数中有字母时,通常省略乘号“X”,并把数字乘数写在字母乘数的前面.

2、练习(补充):

(1)列式表示:

①比a小9的数;

②x的2倍与3的和;

③5与y的差的一半;

④a与b的7倍的和.

(2)根据下列条件,列出关于x的方程:

(1)12与x的差等于x的2倍;

(2)x的三分之一与5的和等于6.

补充例题(练习)的目的一方面是增加列式的机会,另一方面介绍列代数式的有关知识。

小结与作业

课堂小结

可以采用师生问答的方式或先让学归纳,补充,然后教师补充的方式进行,主要围绕以下问题:

1、本节课我们学了什么知识?

2、你有什么收获?

说明方程解决许多实际问题的工具。

本课作业

1、必做题:

阅读教科书上70页的《阅读与思考》;

第73页习题2.1第1,5题。

2、选做题:

根据下列条件,用式表示问题的结果:

(1)一打铅笔有12支,m打铅笔有多少支?

(2)某班有a名学生,要求平均每人展出4枚邮票,实际展出的邮标量比要求数多了15枚,问该班共展出多少枚邮票?

(3)根据下列条件列出方程:

小青家3月份收入a元,生活费花去了三分之一,还剩2400元,求三月份的收入。

本课教育评注(课堂设计理念,实际教学效果及改进设想)

本教学设计着力体现以下几方面特点:

1、突出问题的应用意识.教师首先用一个学生感兴趣的实际问题引人课题,然后运用算术的方法给出解答。

在各环节的安排上都设计成一个个的问题,使学生能围绕问题展开思考、讨论,进行学习.

2、体现学生的主体意识.本设计中,教师始终把学生放在主体的地位:

让学生通过对列算式与列方程的比较,分别归纳出它们的特点,从而感受到从算术方法到代数方法是数学的进步;

让学生通过合作与交流,得出问题的不同解答方法;

让学生对一节课的学习内容、方法、注意点等进行归纳.

3、体现学生思维的层次性.教师首先引导学生尝试用算术方法解决间题,然后再逐步

引导学生列出含未知数的式子,寻找相等关系列出方程.在寻找相等关系、设未知数及作业的布置等环节中,教师都注意了学生思维的层次性.

4、渗透建模的思想.把实际间题中的数量关系用方程形式表示出来,就是建立一种数

学模型,教师有意识地按设未知数、列方程等步骤组织学生学习,就是培养学生由实际问题抽象出方程模型的能力.

3.1.1一元一次方程

(2)

①理解一元一次方程、方程的解等概念;

②掌握检验某个值是不是方程的解的方法;

③培养学生根据间题寻找相等关系、根据相等关系列出方程的能力;

④体验用估算方法寻求方程的解的过程,培养学生求实的态度。

教学重点

重点是寻找相等关系、列出方程.

对于复杂一点的方程,用估算的方法寻求方程的解,需要多次的尝试,也需要一定的估计能力

问题:

小雨、小思的年龄和是25.小雨年龄的2倍比小思的年龄大8岁,小雨、小思的年龄各是几岁?

如果设小雨的年龄为x岁,你能用不同的方法表示小思的年龄吗?

在学生回答的基础上,教师加以引导:

小思的年龄可以用两个不同的式子25-x和2x-8来表示,这说明许多实际问题中的数量关系可以用含字母的式子来表示.

由于这两个不同的式子表示的是同一个量,因此我们又

可以写成:

25-x=2x-8.这样就得到了一个方程.

用学生身边的实际问题作为引入,能有效地激

发学生的参与欲望.用不同的方法表示同一个量,可以自然地列出方程.

自主尝试

①.尝试:

让学生尝试解答教科书第67页的例1。

对于基础比

较差的学生,教师可以作如下提示:

(1)选择一个未知数,设为x,

(2)对于这三个问题,分别考虑:

用含x的式子表示这台计算机的检修时间;

用含x的式子分别表示长方形的长和宽;

用含x的式子分别表示男生和女生的人数.

(3)找一个问题中的相等关系列出方程.

②交流:

在学生基本完成解答的基础上,请几名学生汇报所列的方程,并解释方程等号左右两边式子的含义.

③教师在学生回答的基础上作补充讲解,并强调:

(1)方程等号两边表示的是同一个量;

(2)左右两边表示的方法不同.

简单地说:

列方程就是用两种不同的方法表示同一个量.以第

(1)题为例:

方程左边的式子"

1700+150x”表示计算机已使用的时间加上后来可使用的时间,也就是规定的检修时间.右边的"

2450”也是规定检修的时间.这样就有“1700十150x=2450"

.

④讨论:

问题1:

在第

(1)题中,你还能用两种不同的方法来表示另一个量,再列出方程吗?

让学生在学习小组内讨论,然后分组汇报交流:

选“已使用的时间”可列方程:

2450-150x=1700.

选“还可使用的时间”可列方程:

150x=2450-1700.

在第(3)题中,你还能设其他的未知数为x吗?

在学生独立思考、小组讨论的基础上交流:

设这个学校的男生数为x,那么女生数为(x+80),全校的学生数为(x+x+80).

x+80=52%(x+x+80).

本环节采用“尝试一交流一讲评一讨论”四个

步骤。

这几个问题的提示教师可根据学生的基础灵活处理.

“解释式子的含义”有必要,它可以培养学生的自查的习惯。

强调的目的在于抓住列方程的关键。

讨论的目的在于突出重点,突破难点,同时培养学生的灵活性,也为后面的“移项”打下伏笔。

建立概念

①概念的建立.

让学生在观察上述方程的基础上,教师进行归纳:

各方程都只含有一个未知数,并且未知数的指数都是1,这样的方程叫做一元一次方程.

“一元”:

一个未知数;

“一次”:

未知数的指数是一次.

判断下列方程是不是一元一次方程:

(1)23-x=一7:

(2)2a-b=3

(3)y+3=6y-9;

(4)0.32m-(3+0.02m)=0.7.

(5)x2=1(6)

②引导学生归纳:

从上面的分析过程我们可以发现,用方程的方法来解决实际问题,一般要经历哪几个步骤?

在学生回答的基础上,教师用方框表示:

分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法.

概念的建立要经历由感性到理性的过程,“判断”的目的就是为了对概念进一步理解。

学生参与,渗透建立数学模型的思想。

估算求解

列出方程后,还必须解这个方程,求出未知数的值.对于简单的方程,我们可以采用估算的方法.

①问题:

你认为该怎样进行估算?

可以采用“尝试—发现—归纳”的方法:

让学生尝试后发现,要求出答案必须用一些具体的数值代入,看方程是否成立,最后教师进行归纳.

可以像教科书那样用列表的方法进行尝试,也可以像下面的示意图那样按程序进行尝试.

②在此基础上给出概念:

能使方程左右两边的值相等的未知数的值,叫做方程的解.求方程的解的过程,叫做解方程.

一般地,要检验某个值是不是方程的解,可以用这个值代替未知数代人方程,看方程左右两边的值是否相等.

估算是一种重要的方法,应引起重视。

练习教科书第69页中练习

着重引导学生从以下几个方面进行归纳:

①这节课我们学习了什么内容?

②用列方程的方法解决实际问题的一般思路是什么?

③列方程的实质就是用两种不同的方法来表示同一个量.

④估算是一种重要的方法.

思考:

教科书第69页中的“思考”.(不一定让学生估算出方程的解,目的是体验用估算的方法有时会很麻烦)

对于较复杂的方程,用估算的办法一时很难求出方程的解,只须让学生有所体验即可。

①必做题:

教科书第73页习题2.1第2,6,7,8题·

②选做题:

教科书第74页习题2.1第11题.

③备选题:

(1)x=3是下列哪个方程的解?

()

A.3x-1-9=0B.x=10-4x

C.x(x-2)=3D.2x-7=12

(2)方程

的解是()

A.-3_.B-

C.12D.-12

(3)已知x-5与2x-4的值互为相反数,列出关于x的方程.

(4)某班开展为贫困山区学校捐书活动,捐的书比平均每人捐3本多21本,比平均每人捐4本少27本,求这个班,有多少名学生?

如果设这个班有x名学生,请列出关于x的方程.

学生要学习的数学知识,是经过前人的筛选和整理了的,但对于他们来说仍是全新的、未知的.这就需要教师通过对学习内容的重新设计,启发学生去思考,引导学生去探究,使学生在一定的条件下,经过自身的学习活动,把新的知识纳人原有的认知结构,进行重组、整合,构建新的认知结构.这就是建构主义的教学观.本教学设计在这方面力求得到体现.另外还体现了以下几个特点:

①符合学生的认知规律.本设计以学生身边的数学问题引人,然后采用先尝试的方法学习例1的内容.对于概念的建立采用从具体到抽象、从理论到实践的过程,对于方法的探索采用从特殊到一般的思想.、

②体现了自主学习、合作交流的新课程理念.对于例题的处理,改变了传统的教学模式,采用了“尝试—交流—讲评—讨论”的方式,充分发挥学生的主体性、参与性.对于用估算的方法求方程的解时,同样采用了“尝试—发现—归纳”的方式.

③重视算法算理的渗透也是新课程的一个特点.本设计一开始就让学生用两种不同的方式来表示同一个量,在一步一步的学习中,逐步体现“列方程就是用两种不同的方式来表示同一个量”的观点.在用估算的方法求方程的解时,体现了用具体的数值代入检验的方法.

3.1.2等式的性质

(1)

①了解等式的两条性质;

②会用等式的性质解简单的(用等式的一条性质)一元一次方程;

③培养学生观察、分析、概括及逻辑思维能力;

④渗透“化归”的思想.

理解和应用等式的性质

知识难点

应用等式的性质把简单的一元一次方程化成“x=a”.

教学准备

演示实验用的一架天平、砝码(估计与乒乓球等质量的取3只)、小木块等.

提出问题

用估算的方法我们可以求出简单的一元一次方程的解.你能用这种方法求出下列方程的解吗?

(1)3x-5=22;

(2)0.28-0.13y=0.27y+1.

(1)题要求学生给出解答,第

(2)题较复杂,估算比较困难,此时教师提出:

我们必须学习解一元一次方程的其他方法.

(1)题是为了复习,第

(2)题是估算比较困难,以引起学生认知冲突,引出新课

探究新知

①实验演示:

教师先提出实验的要求:

请同学们仔细观察实验的过程,思考能否从中发现规律,再用自己的语言叙述你发现的规律.然后按教科书第71页图2.1-2的方法演示

实验.

教师可以进行两次不同物体的实验.

②归纳:

请几名学生回答前面的问题.

在学生叙述发现的规律后,教师进一步引导:

等式就像平衡的天平,它具有与上面的事实同样的性质.比如“8=8”,我们在两边都加上6,就有“8+6=8+6”;

两边都减去11,就有“8-11=8-11”_.

③表示:

你能用文字来叙述等式的这个性质吗?

在学生回答的基础上,教师必须说明:

等式两边加上的可以是同一个数,也可以是同一个式子.

问题2:

等式一般可以用a=b来表示.等式的性质1怎样用式子的形式来表示?

如果a=b,那么a±

c=b±

c

字母a、b、c可以表示具体的数,也可以表示一个式子。

④观察教科书第71页图2.1-3,你又能发现什么规律?

你能用实验加以验证吗?

在学生观察图2.1一3时,必须注意图上两个方向的箭头所表示的含义.观察后再请一名学生用实验验证.

然后让学生用两种语言表示等式的性质2.

如果a=b,那么ac=bc

如果a=b(c≠0),那么

你能再举几个运用等式性质的例子吗?

如:

用5元钱可以买一支钢笔,用2元钱可以买一本笔记本,那么用7元钱就可以买一支钢笔和一本笔记本,15元钱就可以买3支钢笔.相当于:

“5元一买1支钢笔的钱;

2元一买1本笔记本的钱.

5元+2元=买1支钢笔的钱+买1本笔记本的钱.

5元=3×

买1支钢笔的钱.”

用实验演示,能比较直观地归纳出等式的性质

两种形式的表示方法应该让学生理解

先观察后实验的目的一是培养学生的看图能力,二是培养学生读数学书的能力

举例的目的在于得到初步的应用

应用举例

方程是含有未知数的等式,我们可以运用等式的性质来解方程。

例1教科书第72页例2中的第

(1)、

(2)题.

分析:

所谓“解方程”,就是要求出方程的解“x=?

’’因此我们需要把方程转化为“x=a(a为常数)”形式。

问题1:

怎样才能把方程x+7=26转化为x=a的形式?

学生回答,教师板书:

解:

(1)两边减7,得、

x+7-7=26-7,

x=19.I

式子“-5x”表示什么?

我们把其中的-5叫做这个式子的系数.你能运用等式的性质把方程-5x=20转化为x=a的形式吗?

用同样的方法给出方程的解.

小结:

请你归纳一下解一元一次方程的依据和结果的形式.

例2(补充)小涵的妈妈从商店买回一条裤子,小涵问妈妈:

“这条裤子需要多少钱?

”妈妈说:

“按标价的八折是36元.”你知道标价是多少元吗?

要求学生尝试用列方程的方法进行解答.在学生基本完成的情况下,教师给出示范.

设标价是x元,则售价就是80%x元,根据售价是36元

80%x=36,

两边同除以80%,得

x=45.

答:

这条裤子的标价是45元.

例题一方面要做好示范,另一方面要充分发挥学生的主体性

小结实际上是解题后的一种反思

补充这个例题,能使学生及时应用所学的知识解决实际问题

1分别说出下列各式子的系数

3x,-7m,

,a,-x,

2利用等式的性质解下列方程

(1)x-5=6

(2)0.3x=45

(3)-y=0.6(4)

③七年级3班有18名男生,占全班人数的45%,求七年级3班的学生人数。

①这方面的练习有体现就够了,以免冲淡解方程

让学生进行小结,主要从以下几个方面去归纳:

①等式的性质有那几条?

用字母怎样表示?

字母代表什么?

②解方程的依据是什么?

最终必须化为什么形式?

③在字母与数字的乘积中,数字因数又叫做这个式子的系数.

你能用等式的性质解本课引入时的方程

3x-5=22吗?

(第2个方程在学了后续的知识后再解答)

课内小结是不可或缺的一环,它可以起到提炼、整理、把知识纳入学生的认知体系.思考题不作统一要求,这将在下一课中学习.

(1)利用等式的性质解下列方程:

①a+25=95②x-12=-4

③0.3x=12④

(2)教科书第74页第9题

①本节课从提出间题,引起学生的认知冲突引出学习的必要性.在每个环节的安排

中,突出了问题的设计,教师通过一个个的问题,把学生的思维激发起来,从而使学生主动、有效地参与到学习中来.

②重视学生多元智能的开发.教师对教科书上的两幅图采取了两种不同的处理方法.

既有直观的实验演示,又有学生的图形观察;

既要求学生从实验中归纳结论,又要求学生理解图形用实验验证.对发现的结论用自己的语言、文字语言、字母表达式表示出来.让

学生充分地进行实验、观察、归纳、表达、应用.

3.1.2等式的性质

(2)

①进一步理解用等式的性质解简简单的(两次运用等式的性质)一元一次方程

②初步具有解方程中的化归意识;

③培养言必有据的思维能力和良好的思维品质.

用等式的性质解方程。

需要两次运用等式的性质,并且有一定的思维顺序。

复习引入

解下列方程:

(1)x+7=1.2;

在学生解答后的讲评中围绕两个问题:

1每一步的依据分别是什么?

2求方程的解就是把方程化成什么形式?

这节课继续学习用等式的性质解一元一次方程。

由于这一课时也是学习用等式的性质解方程,所以通过复习来引入比较自然。

对于简单的方程,我们通过观察就能选择用等式的哪一条性质来解,下列方程你也能马上做出选择吗?

例1利用等式的性质解方程:

()0.5x-x=3.4

(2)

先让学生对第

(1)题进行尝试,然后教师进行引导:

1要把方程0.5x-x=3.4转化为x=a的形式,必须去掉方程左边的0.5,怎么去?

2要把方程-x=2.9转化为x=a的形式,必须去掉x前面的“-”号,怎么去?

然后给出解答:

两边减0.5,得0.5-x-0.5=3.4-0.5

化简,得

-x=-2.9,、

两边同乘-1,得l

x=-2.9

小结:

(1)这个方程的解答中两次运用了等式的性质

(2)解方程的目标是把方程最终化为x=a的形式,在运用性质进行变形时,始终要朝着这个目标去转化.

你能用这种方法解第

(2)题吗?

在学生解答后再点评.

解后反思:

①第

(2)题能否先在方程的两边同乘“一3”?

②比较这两种方法,你认为哪一种方法更好?

为什么?

允许学生在讨论后再回答.

例2(补充)服装厂用355米布做成人服装和儿童服装,成人服装每套平均用布3.5米,儿童服装每套平均用布1.5米.现已做了80套成人服装,用余下的布还可以做几套儿童服装?

在学生弄清题意后,教师再作分析:

如果设余下的布可以做x套儿童服装,那么这x套服装就需要布1.5x米,根据题意,你能列出方程吗?

设余下的布可以做x套儿童服装,那么这x套服装就需要布1.5米,根据题意,得

80x×

3.5+1.5x=355.

化简,得

280+1.5x=355,

两边减280,得

280+1.5x-280=355-280,

1.5x=75,

两边同除以1.5,得x=50.

用余下的布还可以做50套儿童服装.

解后反思:

对于许多实际间题,我们可以通过设未知数,列方程,解方程,以求出问题的解.也就是把实际问题转化为数学问题.

问题:

我们如何才能判别求出的答案50是否正确?

在学生代入验算后,教师引导学生归纳出方法:

检验一个数值是不是某个方程的解,可以把这个数值代入方程,看方程左右两边是否相等,例如:

把x=50代入方程80×

3.5+1.5x=355的左边,得80×

3.5+1.5×

50=280+75=355

方程的左右两边相等,所以x=50是方程的解。

你能检验一下x=-27是不是方程

的解吗?

不同层次的学生经过尝试就会有不同的收获:

一部分学生能独立解决,一部分学生虽不能解答,但经过老师的引导后,也能受到启发,这比纯粹的老师讲解更能激发学生的积级性。

这里补充一个例题的目的一是解方程的应用,二是前两节课中已学到了方程,在这里可以进一步应用,三是使后面的“检验”更加自然。

解题的格式现在不一定要学生严格掌握。

1教科书第73页练习第(3)(4)题。

2小聪带了18元钱到文具店买学习用品,他买了5支单价为1.2元的圆珠笔,剩下的钱刚好可以买8本笔记本,问笔记本的单价是多少?

(用列方程的方法求解)

建议:

采用小组竞赛的方法进行评议

①先让学生

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 表格模板 > 表格类模板

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1