fatigue strength assessment of longiweb connections in ship structures using structural stressWord下载.docx

上传人:b****4 文档编号:16349449 上传时间:2022-11-23 格式:DOCX 页数:19 大小:27.56KB
下载 相关 举报
fatigue strength assessment of longiweb connections in ship structures using structural stressWord下载.docx_第1页
第1页 / 共19页
fatigue strength assessment of longiweb connections in ship structures using structural stressWord下载.docx_第2页
第2页 / 共19页
fatigue strength assessment of longiweb connections in ship structures using structural stressWord下载.docx_第3页
第3页 / 共19页
fatigue strength assessment of longiweb connections in ship structures using structural stressWord下载.docx_第4页
第4页 / 共19页
fatigue strength assessment of longiweb connections in ship structures using structural stressWord下载.docx_第5页
第5页 / 共19页
点击查看更多>>
下载资源
资源描述

fatigue strength assessment of longiweb connections in ship structures using structural stressWord下载.docx

《fatigue strength assessment of longiweb connections in ship structures using structural stressWord下载.docx》由会员分享,可在线阅读,更多相关《fatigue strength assessment of longiweb connections in ship structures using structural stressWord下载.docx(19页珍藏版)》请在冰豆网上搜索。

fatigue strength assessment of longiweb connections in ship structures using structural stressWord下载.docx

2.1.Generalguidelines

2.2.RequirementsforanITER-relevantMHDcontrol

2.3.SteeringanglesneededforO¨

CXconversion

3.Launchingmirrorsdesign

3.1.Mirrorposition

3.2.Mirrorshape

4.Internalopticsandzooming

5.Materialsandcoolingforthemirrors

6.Conclusions

References

Purchase

148RadiationshieldanalysesinsupportoftheFSdesignfortheITERECRHlauncher?

?

OriginalResearchArticle

FusionEngineeringandDesign,Volume82,Issues5-14,October2007,Pages736-743

A.Serikov,U.Fischer,R.Heidinger,M.A.Henderson,P.Spaeh,H.Tsige-Tamirat

Closepreview?

|?

Relatedarticles?

Relatedreferenceworkarticles?

AbstractAbstract|Figures/TablesFigures/Tables|ReferencesReferences

Abstract

Thispaperisdevotedtotheradiationshieldanalysesforthefrontsteering(FS)designoftheelectroncyclotronresonanceheating(ECRH)launcherinstalledintheITERupperport.Theneutronfluxes,nuclearheatdensity,heliumproduction,andneutrondisplacementsratehavebeencalculatedbyMonteCarloN-Particle(MCNP)transportcode.Three-dimensionalMCNPmodelsoftheFSECRHlauncherhavebeenproducedwithhighaccuracydirectlyfromtheCADgeometrymodelsbymeansoftheMcCadinterfaceprogramme.Ashieldinganalysishasbeenperformedtoestimatethematerialcompositionandoptimumlengthrequiredforthelauncher'

sinternalshield.NeutronstreamingcalculationshavebeendoneusingtheMCNPpointdetectorsmethod.Variancereductionsinnuclearresponsesofparticlestrack-lengthestimationswereachievedbytheoptimizedweightwindows,particlessplitting,andRussianroulettetechniques.NucleardesignparametersoftheFSECRHlauncherhavebeenevaluatedbytheneutronicsanalyseswithdedicatedcomputationalprocedures.TheanalysesshowthatsafetyissuesandradiationshieldingrequirementsintheFSdesignarefullysatisfiedtoradiationdesignlimitsspecifiedforITERproject.

2.OutlineoftheFSlauncherdesign

3.Computationalapproach

4.ResultsfortheblanketshieldmoduleoftheFSlauncher

5.ResultsfortheFSlauncherinternalshield

Acknowledgements

149ProgressofITERequatorialelectroncyclotronlauncherdesignforphysicsoptimizationandtowardfinaldesign?

FusionEngineeringandDesign,InPress,CorrectedProof,Availableonline4March2011

K.Takahashi,K.Kajiwara,Y.Okazaki,Y.Oda,K.Sakamoto,T.Omori,M.Henderson

Thedesignoftheequatorialelectroncyclotron(EC)launcherhasadvancedtowardamorereliableandmanufacturablefinaldesign.Themodificationtoquasi-opticallayoutofthemillimeterwavetransmissionlineleadstothelauncherdesignbeingreliableandmorerealistictowardthefinaldesignandthecostreduction.ItisproposedthatoneofthreebeamrowsofthelauncherisflippedsothattheECpowerenablestocontributethecounter-ECcurrentdrivebasedontheITERphysicsrequirement.Inaddition,apoloidalbeamtiltangleof5¡

ã

hasbeenintroducedinthetopandbottombeamrowsothatallbeamscanaccessfromonaxistonearmid-radius.ThesedesignmodificationsrendertheECsystemmoreflexibletoadapttheneedsofadvancedITERphysicsexperiments.Itispreliminarilyestimatedthatthenuclearshieldingcapabilityofthepresentmodifieddesignsatisfiestheneutronfluxcriterion,buttheshutdowndoserateof¦

Ã

-rayisslightlyhigherthanthecriterion.

2.Millimeterwavedesignmodification

3.Designperformanceofnuclearshielding

4.Conclusion

150Fleetdeployment,networkdesignandhublocationoflinershippingcompanies?

TransportationResearchPartE:

LogisticsandTransportationReview,Volume47,Issue6,November2011,Pages947-964

ShahinGelareh,DavidPisinger

Amixedintegerlinearprogrammingformulationisproposedforthesimultaneousdesignofnetworkandfleetdeploymentofadeep-sealinerserviceprovider.Theunderlyingnetworkdesignproblemisbasedona4-index(5-indexbyconsideringcapacitytype)formulationofthehublocationproblemwhichareknownfortheirtightness.Thedemandiselasticinthesensethattheserviceprovidercanacceptanyfractionoftheorigin¨

Cdestinationdemand.Wethenproposeaprimaldecompositionmethodtosolveinstancesoftheproblemtooptimality.Numericalresultsconfirmsuperiorityofourapproachincomparisonwithageneral-purposemixedintegerprogrammingsolver.

1.Introduction

1.1.Networkdesign

1.2.Fleetdeploymentproblem

1.3.Hublocationproblem

1.4.Objectiveandcontribution

2.Problemstatement

3.Mathematicalmodel

3.1.Parameters

3.2.Decisionvariables

3.3.Formulation

4.Solutionmethod

4.1.Masterproblem

4.2.Branchingrulesandpreprocessing

4.2.1.Explicitconstraintbranching

4.2.2.Preprocessing

4.2.3.Tighterbenderscuts

4.2.4.Symmetry

5.Computationalresults

6.Summary,conclusionandoutlooktofuturework

Researchhighlights

Anovelmathematicalmodelforthesimultaneousdesignofnetworkandfleetdeployment.?

Thedemandiselastic.?

Asophisticatedexactdecompositionalgorithm.

151Modelingandsimulationfordamageanalysisofintelligent,self-reconfigurableshipfluidsystemsinearlydesignphase?

SimulationModellingPracticeandTheory,Volume19,Issue9,October2011,Pages1983-2006

KyungjinMoon,DimitriN.Mavris

Thispaperpursuesamodelingandsimulation(M&

S)solutionforperformingarigorousdamageanalysisintheconceptualorpreliminarydesignofanintelligent,self-reconfigurableshipfluidsystem.Asenablerstothesolution,twoessentialelementswereidentifiedintheformulation.Thefirstoneisthegraph-basedtopologicalmodelingmethodwhichwillbeemployedforrapidmodelreconstructionanddamagemodeling,andthesecondoneistherecurrentneuralnetwork-based,component-levelsurrogatemodelingmethodwhichwillbeusedtoimprovetheaffordabilityandefficiencyoftheM&

Scomputations.Theintegrationofthesetwomethodscandelivercomputationallyefficient,flexible,andautomation-friendlyM&

Swhichwillcreateanenvironmentforamorerigorousdamageanalysis.Finally,ademonstrationofthedamageanalysisasitisappliedtoanotionalshipfluidsystemisprovided,withadescriptionofthebenefitsofthisapproach.

1.1.Background

1.2.Researchgoalandscope

1.3.OverviewofM&

Sapproach

2.Graph-basedtopologicalmodeling

2.1.Definitionofedgesandnodesandtheirtypes

2.2.Topologicallayoutvs.geometriclayout

2.3.Connectivitymodelingusingincidencematrix

3.Neuralnetwork-basedsurrogatemodeling

3.1.RNNsurrogatemodelwithblockstructure

3.2.Designofregressorvector

3.3.Trainingsurrogatemodel

3.3.1.Designofexperiments(DOE)fordynamicsystemsimulation

3.3.2.Computerexperimentanddataextraction

3.3.3.Training,testing,andlaunchingNNsurrogatemodel

4.Damagemodeling

4.1.Damagebubble

4.2.Referencedamagecontrolmodel

4.3.Automaticgenerationofreferencedamagecontrolmodel

4.3.1.GenerateAcetheincidencematrixofcontroller-attachededges

4.3.2.GeneratetheedgeadjacencymatrixXceusingAce

4.3.3.Generatecontrollerobjectsandidentifytheneighborslistsandthelocaladjacencymatricesofthem

5.Modelintegrationandsimulation

5.1.Modelset-up

5.2.SimulationprocessandJacobiancomputation

6.M&

Sexample

6.1.Briefintroductionofchilled-watermodelofnotionalship

6.2.Graph-basedrepresentation

6.3.Generationofcomponentsurrogatemodels

6.4.Simulationsettingsandresults

6.4.1.Open-loopmodelverification

6.4.2.Damageanalysis

7.Concludingremarks

Highlights

Amodelingandsimulation-baseddamageanalysisforthecoolingflu

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教学研究 > 教学反思汇报

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1