中考总复习四边形、圆.doc

上传人:b****2 文档编号:1633698 上传时间:2022-10-23 格式:DOC 页数:12 大小:933.50KB
下载 相关 举报
中考总复习四边形、圆.doc_第1页
第1页 / 共12页
中考总复习四边形、圆.doc_第2页
第2页 / 共12页
中考总复习四边形、圆.doc_第3页
第3页 / 共12页
中考总复习四边形、圆.doc_第4页
第4页 / 共12页
中考总复习四边形、圆.doc_第5页
第5页 / 共12页
点击查看更多>>
下载资源
资源描述

中考总复习四边形、圆.doc

《中考总复习四边形、圆.doc》由会员分享,可在线阅读,更多相关《中考总复习四边形、圆.doc(12页珍藏版)》请在冰豆网上搜索。

中考总复习四边形、圆.doc

中考总复习——四边形、圆

1.如下左图,正△AEF的边长与菱形ABCD的边长相等,点E、F分别在BC、CD上,则∠B的度数是()

A.70°B.75°C.80°D.95°

2.如上右图,菱形ABCD的对角线相交于点O,若AC=12,AB=7,则菱形ABCD的面积是()

A.12B.36C.24D.60

3.如下左图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为()

A.1B.C.4-2D.3-4

4.如上中图,在矩形ABCD中,AB=2,BC=3,M为BC中点,连接AM,过D作DE⊥AM于E,则DE的长度为()

A.2B.C.D.

5.如上右图,矩形ABCD绕点B逆时针旋转30°后得到矩形A1BC1D1,C1D1与AD交于点M,延长DA交A1D1于F,若AB=1,BC=,则AF的长度为()

A.B.C.D.

6.如下左图,圆O与正方形ABCD的两边AB、AD相切,且DE与圆O相切于E点.若圆O的半径为5,且AB=11,则DE的长度为何?

().

A.5B.6C.D.

7.如上中图,AB是⊙O的直径,C,D是⊙O上的点,且OC∥BD,AD分别与BC,OC相交于点E,F,则下列结论:

①AD⊥BD;②∠AOC=∠AEC;③BC平分∠ABD;④AF=DF;⑤BD=2OF.其中正确结论的个数是()

A.2B.3C.4D.5

8.如上右图,一个半径为r的圆形纸片在边长为a()的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片“不能接触到的部分”的面积是()

A.B.C.D.πr2

9.一扇形的半径等于已知圆的半径的2倍,且它的面积等于该圆的面积,则这一扇形的圆心角为()

A.20°B.120°C.100°D.90°

10.如下左图,AB是半圆O的直径,点C是的中点,点D是的中点,连接AC.BD交于点E,则=()

A.B.C.D.

11.如上中图,在正方形ABCD中,点E是BC上的一定点,且BE=5,EC=7,点P是BD上的一动点,则PE+PC的最小值是.

12.如上右图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠AED等于度.

13.如下左图,正方形ABCD的边长为3,对角线AC与BD相交于点O,CM交BD于点N,若BM=1,则线段ON的长为.

14.如上中图,量角器边缘上有P、Q两点,它们表示的读数分别为60°,30°,已知直径AB=4,连接PB交OQ于M,则QM的长为.

15.如上右图,在平面直角坐标系xOy中,⊙P与y轴相切于点C,⊙P的半径是4,直线y=x被⊙P截得的弦AB的长为,则点P的坐标为.

16.如下左图,在平面直角坐标系中,点A的坐标是(4,3),动圆D经过A、O,分别与两坐标轴的正半轴交于点E、F.当EF⊥OA时,此时EF=.

17.一个圆锥的侧面展开图是半径为3,圆心角为120°的扇形,则这个圆锥的高为.

18.如上右图,正△ABC的边长是4,分别以点B,C为圆心,以r为半径作两条弧,设两弧与边BC围成的阴影部分面积为S,当2≤r≤4时,S的取值范围是.

19.在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于F,且AF=BD,连接BF.

(1)、求证:

BD=CD;

(2)、如果AB=AC,试判断四边形AFBD的形状,并证明你的结论.

20.如图,△ABC为等边三角形,D、F分别为BC、AB上的点,且CD=BF

(1)求证:

△ACD≌△CBF

(2)以AD为边作等边三角形△ADE,点D在线段BC上的何处时,四边形CDEF是平行四边行.

21.如图,在正方形ABCD中,E、F是对角线BD上两点,且∠EAF=45°,将△ADF绕点A顺时针旋转90°后,得到△ABQ,连接EQ,求证:

(1)EA是∠QED的平分线;

(2)EF2=BE2+DF2.

22.如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.

(1)求证:

PA是⊙O的切线;

(2)若AB=4+,BC=2,求⊙O的半径.

23.已知AB为⊙O的直径,OC⊥AB,弦DC与OB交于点F,在直线AB上有一点E,连接ED,且有ED=EF.

(1)如图1,求证:

ED为⊙O的切线;

(2)如图2,直线ED与切线AG相交于G,且OF=1,⊙O的半径为3,求AG的长.

24.如图,⊙O中,直径CD⊥弦AB于E,AM⊥BC于M,交CD于N,连AD.

(1)求证:

AD=AN;

(2)若AB=,ON=1,求⊙O的半径.

(3)若且AE=4,求CM

25.如图,在平面直角坐标系中,矩形OABC的边OA=4,OC=3,且顶点A、C均在坐标轴上,动点M从点A出发,以每秒1个单位长度的速度沿AO向终点O移动;点N从点C出发沿CB向终点B以同样的速度移动,当两个动点运动了x秒(0<x<4)时,过点N作NP⊥BC交BO于点P,连接MP.

(1)直接写出点B的坐标,并求出点P的坐标(用含x的式子表示);

(2)设△OMP的面积为S,求S与x之间的函数表达式;若存在最大值,求出S的最大值;

(3)在两个动点运动的过程中,是否存在某一时刻,使△OMP是等腰三角形?

若存在,求出x的值;若不存在,请说明理由.

26.抛物线y=+x+m的顶点在直线y=x+3上,过点F(-2,2)的直线交该抛物线于点M、N两点(点M在点N的左边),MA⊥x轴于点A,NB⊥x轴于点B.

(1)先通过配方求抛物线的顶点坐标(坐标可用含m的代数式表示),再求m的值;

(2)设点N的横坐标为a,试用含a的代数式表示点N的纵坐标,并说明NF=NB;

(3)若射线NM交x轴于点P,且PA•PB=,求点M的坐标.

试卷第5页,总6页

参考答案

1.C

【解析】试题分析:

正△AEF的边长与菱形ABCD的边长相等,所以AB=AE,AF=AD,设∠B=x,则

∠BAD=180°﹣x,∠BAE=∠DAF=180°﹣2x,即180°﹣2x+180°﹣2x+60°=180°﹣x解得x=80°,故选C.

2.A

【解析】试题分析:

由菱形的性质得出AC⊥BD,OA=OC=AC=6,OB=OD=BD,由勾股定理求出OB,得出BD的长,菱形ABCD的面积=AC×BD,即可得出结果.∵四边形ABCD是平行四边形,

∴AC⊥BD,OA=OC=AC=6,OB=OD=BD,∴OB===,

∴BD=2,∴菱形ABCD的面积=AC×BD=×12×2=12;

3.C

【解析】试题分析:

连接AC交BD与点O,根据正方形的性质可得:

AC⊥BD,AC=BD=4,BO=2,然后根据角平分线的性质得出EF=EO,然后根据Rt△BEF的勾股定理求出答案.

4.B

【解析】试题分析:

连接DM,则△ADM的面积为3,根据中点的性质可得:

BM=1.5,根据Rt△ABM的勾股定理可得:

AM=2.5,则根据等面积法可得:

DE=3×2÷2.5=.

5.A.

【解析】试题分析:

连接BD,如图所示:

在矩形ABCD中,∠C=90°,CD=AB=1,在Rt△BCD中,CD=1,BC=,

∴tan∠CBD=,BD=2,∴∠CBD=30°,∠ABD=60°,

由旋转得,∠CBC1=∠ABA1=30°,∴点C1在BD上,连接BF,由旋转得,AB=A1B,∵矩形A1BC1D1是矩形ABCD旋转所得,∴∠BA1F=∠BAF=90°,∵AF=AF,∴△A1BF≌△ABF,∴∠A1BF=∠ABF,∵∠ABA1=30°,∴∠ABF=∠ABA1=15°,∵∠ABD=60°,∴∠DBF=75°,∵AD∥BC,∴∠ADB=∠CBD=30°,∴∠BFD=75°,∴DF=BD=2,∴AF=DF﹣AD=,故选A.

6.B.

【解析】试题分析:

求出正方形ANOM,求出AM长和AD长,根据DE=DM求出即可.连接OM、ON,∵四边形ABCD是正方形,∴AD=AB=11,∠A=90°,∵圆O与正方形ABCD的两边AB、AD相切,∴∠OMA=∠ONA=90°=∠A,∵OM=ON,∴四边形ANOM是正方形,∴AM=OM=5,∵AD和DE与圆O相切,圆O的半径为5,∴AM=5,DM=DE,∴DE=11﹣5=6.故选:

B.

7.C.

【解析】试题分析:

∵AB是⊙O的直径,∴∠ADB=90°,即AD⊥BD,故①正确;

∵∠ACE=∠DAB+∠EBA,∠AOC=2∠EBA,∴∠AOC≠∠AEC,故②不正确;∵OC∥BD,∴∠OCB=∠CBD,∵OC=OB,∴∠OCB=∠OBC,∴∠OBC=∠CBD,即BC平分∠ABD,故③正确;∴OC⊥AD,∴AF=FD,故④正确;

∴OF为△ABD的中位线,∴BD=2OF,故⑤正确,综上可知正确的有4个,故选C.

8.C.

【解析】试题解析:

如图,当圆形纸片运动到与∠A的两边相切的位置时,

过圆形纸片的圆心O1作两边的垂线,垂足分别为D,E,

连AO1,则Rt△ADO1中,∠O1AD=30°,O1D=r,.

∴.由.

∵由题意,∠DO1E=120°,得,∴圆形纸片不能接触到的部分的面积为=.故选C.

9.D.

【解析】试题分析:

设圆的半径为r,则扇形的半径为2r,利用面积公式可得:

=πr2,

解得n=90.故选:

D.

10.D.

【解析】试题分析:

根据平行线的性质证得,△ADF是等腰直角三角形,求得BD=+1,再证△AED∽△BFA,得ED=-1,BE=2.所以

试题解析:

连接AD.CD,作AF∥CD,交BE于F,∵点D是弧AC的中点,

∴可设AD=CD=1,根据平行线的性质得∠AFD=∠CDF=45°,∠CBD=∠DAB=15°,

∴△ADF是等腰直角三角形,∠FAB=15°则AF=,BF=AF=.

∴BD=+1.∵∠DAC=∠ABD,∠ADB=∠ADB,∴△AEF∽△BEA,

∴DE=-1,BE=2.∴.故选D.

11.13.

【解析】试题分析:

要求PE+PC的最小值,PE,PC不能直接求,可考虑通过作辅助线转化PE,PC的值,从而找出其最小值求解.如图,连接AE交BD于P点,则AE就是PE+PC的最小值,∵正方形ABCD中,点E是BC上的一定点,且BE=5,EC=7,∴AB=12,∴AE==13,∴PE+PC的最小值是13.

故答案为:

13.

12.65

【解析】试题分析:

∵正方形ABCD,∴A

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 初中教育 > 学科竞赛

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1