4 Analogtodigital converter 华科Word格式.docx
《4 Analogtodigital converter 华科Word格式.docx》由会员分享,可在线阅读,更多相关《4 Analogtodigital converter 华科Word格式.docx(13页珍藏版)》请在冰豆网上搜索。
Thevaluesareusuallystoredelectronicallyinbinaryform,sotheresolutionisusuallyexpressedinbits.thenumberofdiscretevaluesavailable,or"
levels"
isusuallyapoweroftwo.
Forexample,anADCwitharesolutionof8bitscanencodeananaloginputtoonein256differentlevels,since28=256.Thevaluescanrepresenttherangesfrom0to255(i.e.unsignedinteger)orfrom-128to127(i.e.signedinteger),dependingontheapplication.
(分辨率也可以用电压单位伏特来表示)Resolutioncanalsobedefinedelectrically,andexpressedinvolts.ThevoltageresolutionofanADCisequaltoitsoverallvoltagemeasurementrangedividedbythenumberofdiscreteintervalsasintheformula:
Where:
Q:
resolutioninvoltsperstep(voltsperoutputcode),
EFSR:
thefullscalevoltagerange=VRefHi−VRefLo,
M:
theADC'
sresolutioninbits,and
N:
thenumberofintervals,givenbythenumberofavailablelevels(outputcodes),whichis:
N=2M
下面具3个例子:
Someexamplesmayhelp:
Example1
Fullscalemeasurementrange=0to10volts
ADCresolutionis12bits:
212=4096quantizationlevels(codes)
ADCvoltageresolutionis:
(10V-0V)/4096codes=10V/4096codes
0.00244volts/code
2.44mV/code
Example2
Fullscalemeasurementrange=-10to+10volts
ADCresolutionis14bits:
214=16384quantizationlevels(codes)
(10V-(-10V))/16384codes=20V/16384codes
0.00122volts/code
1.22mV/cod
Example3
Fullscalemeasurementrange=0to8volts
ADCresolutionis3bits:
23=8quantizationlevels(codes)
(8V−0V)/8codes=8V/8codes=1volts/code=1000mV/code
ThistypeofADCcanbemodeledmathematicallyas:
(实际系统中,AD分辨率由性噪比决定)
Inpractice,theusefulresolutionofaconverterislimitedbythebestsignal-to-noiseratiothatcanbeachievedforadigitizedsignal.AnADCcanresolveasignaltoonlyacertainnumberofbitsofresolution,calledthe"
effectivenumberofbits"
(ENOB).Oneeffectivebitofresolutionchangesthesignal-to-noiseratioofthedigitizedsignalby6dB,
(如果分辨率被AD限制,那么前置运放的信噪比将起很大作用)iftheresolutionislimitedbytheADC.IfapreamplifierhasbeenusedpriortoA/Dconversion,thenoiseintroducedbytheamplifiercanbeanimportantcontributingfactortowardstheoverallSNR.
1.2Responsetype(线型非线性)
1.2.1LinearADCs
MostADCsareofatypeknownaslinear,
althoughanalog-to-digitalconversionisaninherentlynon-linearprocess(sincethemappingofacontinuousspacetoadiscretespaceisapiecewise-constantandthereforenon-linearoperation).Thetermlinearasusedheremeansthattherangeoftheinputvaluesthatmaptoeachoutputvaluehasalinearrelationshipwiththeoutputvalue.
1.2.2Non-linearADCs
Iftheprobabilitydensityfunctionofasignalbeingdigitizedisuniform,thenthesignal-to-noiseratiorelativetothequantizationnoiseisthebestpossible.
Becausethisisoftennotthecase,it'
susualtopassthesignalthroughitscumulativedistributionfunction(CDF)beforethequantization.Thisisgoodbecausetheregionsthataremoreimportantgetquantizedwithabetterresolution.Inthedequantizationprocess,theinverseCDFisneeded.
Thisisthesameprinciplebehindthecompandersusedinsometape-recordersandothercommunicationsystems,andisrelatedtoentropymaximization.(Neverconfusecompanderswithcompressors!
)
Forexample,avoicesignalhasaLaplaciandistribution.Thismeansthattheregionaroundthelowestlevels,near0,carriesmoreinformationthantheregionswithhigheramplitudes.Becauseofthis,logarithmicADCsareverycommoninvoicecommunicationsystemstoincreasethedynamicrangeoftherepresentablevalueswhileretainingfine-granularfidelityinthelow-amplituderegion.
Aneight-bita-lawortheμ-lawlogarithmicADCcoversthewidedynamicrangeandhasahighresolutioninthecriticallow-amplituderegion,thatwouldotherwiserequirea12-bitlinearADC.
1.3Samplingrate(如何确定采样频率)
Theanalogsignaliscontinuousintimeanditisnecessarytoconvertthistoaflowofdigitalvalues.Itisthereforerequiredtodefinetherateatwhichnewdigitalvaluesaresampledfromtheanalogsignal.Therateofnewvaluesiscalledthesamplingrateorsamplingfrequencyoftheconverter.
Acontinuouslyvaryingbandlimitedsignalcanbesampled(thatis,thesignalvaluesatintervalsoftimeT,thesamplingtime,aremeasuredandstored)andthentheoriginalsignalcanbeexactlyreproducedfromthediscrete-timevaluesbyaninterpolationformula.
Theaccuracyislimitedbyquantizationerror.
However,thisfaithfulreproductionisonlypossibleifthesamplingrateishigherthantwicethehighestfrequencyofthesignal.ThisisessentiallywhatisembodiedintheShannon-Nyquistsamplingtheorem.(奈奎斯特采样定理)
SinceapracticalADCcannotmakeaninstantaneousconversion,theinputvaluemustnecessarilybeheldconstantduringthetimethattheconverterperformsaconversion(calledtheconversiontime).Aninputcircuitcalledasampleandholdperformsthistask—inmostcasesbyusingacapacitortostoretheanalogvoltageattheinput,andusinganelectronicswitchorgatetodisconnectthecapacitorfromtheinput.ManyADCintegratedcircuitsincludethesampleandholdsubsysteminternally.(采样保持电路)
1.3.1Aliasing
Forexample,a2
kHzsinewavebeingsampledat1.5
kHzwouldbereconstructedasa500
Hzsinewave.Thisproblemiscalledaliasing.
Matlab演示:
second_nyqst.mdl。
Toavoidaliasing,theinputtoanADCmustbelow-passfilteredtoremovefrequenciesabovehalfthesamplingrate.Thisfilteriscalledananti-aliasingfilter,andisessentialforapracticalADCsystemthatisappliedtoanalogsignalswithhigherfrequencycontent.
(可以用作下变频或带通采样)Althoughaliasinginmostsystemsisunwanted,itshouldalsobenotedthatitcanbeexploitedtoprovidesimultaneousdown-mixingofaband-limitedhighfrequencysignal。
1.3.2IF/RF(bandpass)sampling
(信号有正频率,和负频率,采样是按照采样频率将它们在频谱上进行搬移)RealsignalshaveFourierspectrawithsymmetryaboutzero.Thatis,theyhaveanegative-frequencyspectrumthatisamirrorimageofthepositive-frequencyspectrum.Samplingeffectivelyshiftsbothsidesofthespectrumbymultiplesofthesamplingfrequency.Thecriteriontoavoidaliasingisthatnoneoftheseshiftedcopiesofthespectrumoverlap.
画图解释采样是将被采样信号进行频谱周期搬移。
Inthecaseofabandpass(non-baseband)signal,
withlowandhighbandlimitsfLandfHrespectively,theconditionforanacceptablesamplerateisthatshiftsofthebandsfromfLtofHandfrom–fHto–fLmustnotoverlapwhenshiftedbyallintegermultiplesofsamplingratefs.Thisconditionreducestotheconstraint:
forsomensatisfying:
Thehighestnforwhichtheconditionissatisfiedleadstothelowestpossiblesamplingrates.(n最大的时候采样率最低)
Importantsignalsofthissortincludearadio'
sintermediate-frequency(IF)orradio-frequency(RF)signal.(中频或射频采用这个)
Ifn>
1,thentheconditionsresultinwhatissometimesreferredtoasundersampling,bandpasssampling,orusingasamplingratelessthantheNyquistrate2fHobtainedfromtheupperboundofthespectrum.(n>
1的时候,就不满足普通的奈奎斯特频率要求了)
Alternatively,forthecaseofagivensamplingfrequency,simplerformulaefortheconstraintsonthesignal'
sspectralbandaregivenbelow.(举个容易理解的例子)
Example:
ConsiderFMradiotoillustratetheideaofundersampling.
IntheUS,FMradiooperatesonthefrequencybandfromfL=88MHztofH=108MHz.Thebandwidthisgivenby
Thesamplingconditionsaresatisfiedfor
Therefore,ncanbe1,2,3,4,or5.
Thevaluen=5givesthelowestsamplingfrequenciesinterval
andthisisascenarioofundersampling.
Inthiscase,thesignalspectrumfitsbetweenand2and2.5timesthesamplingrate(higherthan86.4–88MHzbutlowerthan108–110MHz).(被采样信号,卡在2到2.5倍采样频率之间)
Alowervalueofnwillalsoleadtoausefulsamplingrate.Forexample,usingn=4,theFMbandspectrumfitseasilybetween1.5and2.0timesthesamplingrate,forasamplingratenear56MHz(multiplesoftheNyquistfrequencybeing28,56,84,112,etc.).
Whenundersamplingareal-worldsignal,thesamplingcircuitmustbefastenoughtocapturethehighestsignalfrequencyofinterest.(信号采集频率应该快到采集最高频的信号)
Theoretically,eachsampleshouldbetakenduringaninfinitesimallyshortinterval,butthisisnotpracticallyfeasible.(每次采集时间应该无限短,不过不实际)
Instead,thesamplingofthesignalshouldbemadeinashortenoughintervalthatitcanrepresenttheinstantaneousvalueofthesignalwiththehighestfrequency.(实际上,足够短就行,不需要无限短)
ThismeansthatintheFMradioexampleabove,thesamplingcircuitmustbeabletocaptureasignalwithafrequencyof108MHz,not43.2MHz.Thus,thesamplingfrequencymaybeonlyalittlebitgreaterthan43.2MHz,buttheinputbandwidthofthesystemmustbeatleast108MHz.Similarly,theaccuracyofthesamplingtiming,orapertur