材料科学与工程学院生产实习报告Word文件下载.docx

上传人:b****6 文档编号:16298622 上传时间:2022-11-22 格式:DOCX 页数:22 大小:32.39KB
下载 相关 举报
材料科学与工程学院生产实习报告Word文件下载.docx_第1页
第1页 / 共22页
材料科学与工程学院生产实习报告Word文件下载.docx_第2页
第2页 / 共22页
材料科学与工程学院生产实习报告Word文件下载.docx_第3页
第3页 / 共22页
材料科学与工程学院生产实习报告Word文件下载.docx_第4页
第4页 / 共22页
材料科学与工程学院生产实习报告Word文件下载.docx_第5页
第5页 / 共22页
点击查看更多>>
下载资源
资源描述

材料科学与工程学院生产实习报告Word文件下载.docx

《材料科学与工程学院生产实习报告Word文件下载.docx》由会员分享,可在线阅读,更多相关《材料科学与工程学院生产实习报告Word文件下载.docx(22页珍藏版)》请在冰豆网上搜索。

材料科学与工程学院生产实习报告Word文件下载.docx

煤磨

冷却机

储存设备

一厂

MLS3626立磨o-sepa高效选粉机

Φ4×

60m五级旋风预热器(带分解炉)

13m2台

MPF1713

LBT32216

堆料场,配料站,均化库,熟料库,水泥库

二厂

Φ1.83×

7mΦ1.2×

4.5m串联o-sepa250选粉机

Φ2.7×

42m五级旋风预热器

Φ2.2×

7.5m”AAA”三仓磨

Φ1.7×

2.5m球磨机

Φ2.8×

28m

三厂

6.5m

o-sepa500选粉机

Φ2.8/Φ2.5×

40m四级旋风预热器

6.5mΦ1.83×

7m串联

Φ2.5/Φ3.0/Φ2.5

(1)PC-XXXX年代取得的成果.40多年来,国外许多现代化水泥厂几乎全部实现了原料配比的自动控制.这个自动控制系统的应用成功,主要在于对生料化学成分可以进行在线快速分析和建立了一套数学模型及控制算法.

控制系统的目标是调节入磨原料配比,保证规定的生料化学成分.控制系统分为两段,首先对待用的各种物料进行取样和分析,再由东西得到的化学成分计算出各种原料的要求配比.计算公式是线形的,很容易由计算机计算出.在某些情况下即使不可能取得最理想的配比,也可以求出近乎理想的配比.

计算机取得的各种原料的成放是取样值的平均数.原料成分的波动会导致生料成分的波动.近年来,很多工厂采用了自动取样装置及X荧光分析仪,-射线仪分析生料成分,将测定的结果输入计算机,以便及时得到各种原料配比,并调整其流量.

样品的抽取一般有两种方式,即磨入口取样和磨出口取样.前一种取样方式虽然可以缩短控制的滞后时间,但由于进入磨机前的物料均匀性差,故一般采用后一种取样方式.

采用电子计算机进行配料计算和控制的指导思想及基本原则如下:

(1)对取样器采集的样品,一般是间隔测量分析,同时考虑到原料在喂料机上的输送时间,在磨机内的粉磨时间以及制样,分析所需的时间,故计算一次配料的时间周期大约为30-60min.生料配料控制程序也是按此时间定期启动.

(2)配料计算中所用的生料目标率值,一般是应用熟料的率值,以便考虑煤灰掺入的影响.

(3)采用修正控制加积分控制的方法.对原料成分数据之所以进行修正计算,是由于给定的原料成分是某一段时间的平均值,而实际上从矿山开采的原料资源在质量上是有所波动的,虽经过预均化,入磨原料的成分仍然时刻波动,故原料成分的实际值与给定值之间有偏离.对于产生偏差的主要原因进行理论分析,可有两种考虑方法:

一是假定偏差是由于原料中所含比例最大的那种氧化物的波动引起的,例如,石灰石中的CaO,砂岩中的SiO2,页岩中的Al2O3和铁粉中的Fe2O3等,即修正的要素是选用这些原料中含量最多的氧化物;

另一种假设是认为生料成分的波动是由于几种原料中配合比例最大的那种原料化学成分波动,或者是由化学成分波动最大的那种原料的化学成分波动而引起的.这样,在四种原料配料中假定三种原料化学成分没有变,或假定四种原料中的三种含量较小的氧化物的成分未变,就可以根据两次取样间的原料配比及出磨生料中四种氧化物的含量计算下一周期所需的原料新配比(当然计算中也要考虑煤灰的影响).

(4)对原料成分进行修正计算后实际上每一次生料值率的瞬间值与目标值仍会产生微小的偏差.为消除这些偏差,在每次新配比计算中都要考虑前几个周期进入均化库的生料率值,以便消除或减小累计偏差,使在均化库中的这几个周期的生料的平均成分值与设定的目标值趋于一致.

3.6.3磨机系统压力控制

磨机系统压力控制的目的,是为了检测各部通风情况,及时调节,满足烘干及粉磨作业要求.磨机出,入口负压差,表征磨内通风的阻力大小,压差增大表示磨内可能负荷过大或隔仓板篦缝可能发生堵塞;

其他任何两点之间的压差有较大变动,都表明两点间阻力的变.一般在生产情况基本正常,压差变动不大时,可适当调节排风机的风门;

压差变动过大时,则需及时检查设备状况,及时消除故障.

3.6.4磨机开车喂料程序控制

对磨机启动时的喂料程序控制的目的,是为了避免磨机启动时,由于外了喂料不当时发生磨满堵塞.该程序控制可以保证对磨机的喂料量进行均匀地,按一定程序的逐步加大,实现最优操作.控制办法是在磨机启动后,检测出它的负荷值,用计算机按一定数学模型运算处理,向喂料调节器送出喂料量的目标值,使之逐步增大喂料量,直至磨机进入正常负荷状态为止.

3.6.5辊式磨的自动调节控制系统

辊式磨自动控制系统的设置基本与上述方法相同,由于磨机结构与烘干兼粉磨的钢球蘑机不同,故自动控制系统亦有区别,一般装设五个自动调节回路.

3.6.6磨机系统温度控制

磨机系统温度控制的目的,是为了保持良好的烘干及粉磨作业,保证成品水分达到规定要求.烘干粉磨系统的温度控制,大多采用单回路自动调节系统.对磨机成品水分的控制可有两种方法:

一是根据原料及成品水分,通过调节系统排风机风门,改变入磨热风量,控制烘干作业;

另一种是通过改变热风入口管道上的冷风门,调节入磨热风温度,控制烘干作业.两种方法相比,后一种方法有利于保持磨机系统的生产稳定.在带有预烘干设备的烘干粉磨系统及利用选粉机等设备同时进行原料烘干时,亦需通过调节各种设备系统的排风机风门或冷风掺入量的办法,调节热风进入量或改变热风温度,以控制这些设备的出口气温,达到控制烘干过程的目的.

4熟料的煅烧

4.1生料的预热和预分解系统

尧柏水泥一厂的预热与分解系统为五级旋风预热器和分解炉,从窑头来的三次风入分解炉,分解炉上有两个喷煤管来完成煤粉的供给.相关参数如下

分解炉的尺寸为:

Φ5.1×

30m

五级预热器的尺寸分别为:

C12—Φ4600mm;

C21—Φ6500mm;

C31—Φ6800mm;

C41—Φ6800mm;

C51—Φ6800mm.

尧柏水泥三厂的预分解系统为四级旋风带分解炉.物料从预热器的顶端加入,从一级旋风筒依次向下再经过分解炉最后入回转窑;

从窑头来的高温气体先入分解炉,然后依次向上最后进入增湿塔,一句话概括就是料往下走,气往上流.

预分解系统不但合理利用了来自于窑头的废气,节约了能源,而且使物料预先进行了预热和分解,从而为物料的煅烧提供了前提,提高了熟料的质量和生产效率.

4.2煅烧设备

在预分解窑系统中,回转窑具有燃烧燃料功能,热交换功能,化学反应功能,物料输送功能,降解利用废气物五大功能.回转窑中分为干燥带,预热带,分解带,固相反应带,烧成带和冷却带,在尧柏水泥厂主要是采用ф4.0×

60m的回转窑,其放置的倾斜度为4%,传动装置采用的是直流电机单传动,窑体转速为0.41~0.42r/min.

在回转窑的斜度和转速不变的情况下,物料在窑内各带的化学变化和物理状态不同,使得物料以不同的速度通过窑的各带.在烧成带硅酸二钙吸收氧化钙形成硅酸三钙微吸热,只是在熟料形成过程中生成液相时需极少量的熔融净热,在分解窑内,碳酸钙分解需要吸收大量的热量.

4.3熟料冷却

水泥熟料出窑温度大约为1100~1300摄氏度,充分回收熟料带走的热量以预热二次要气,对提高燃烧速度和燃料温度以及窑和冷却机的热效率,都有主要意义,冷却熟料对于改善熟料的质量和易磨性有良好的效果,冷却良好的熟料可保证设备的安全运转.

熟料冷却主要有三种类型:

一是:

筒式(包括单筒和多筒);

二是:

篦式(包括震动,回转推动篦式);

三是:

其他形式(包括立式及”g”式)

尧柏水泥厂,一厂使用的是篦冷机,通过风机进行冷却.三厂使用的是单筒冷却机,单筒冷却机与窑相似,不同的是筒内装有扬料板用以加速熟料冷却.

4.4烧成工段工艺流程

附:

图4.1烧成工段工艺流程(尧柏水泥一厂)

图4.2烧成工段工艺流程(尧柏水泥三厂)

4.5烧成工段主要设备及其工作原理

(1)旋风预热器

旋风预热器由上下排列的五级旋风筒组成,为了提高收尘效率最上一级旋风筒通常为双级旋风筒之间由气体管通连接;

每个旋风筒和相连的管道形成预热器的一个级.通常预热器由上向下顺序编号为Ⅰ至Ⅳ(或Ⅴ,Ⅵ)旋风筒的卸料口用生料管道与下一级的气体管道连接.生料首先喂入I级旋风筒的入口的上升管道内,熟料在管道内进行充分热交换,然后由I级旋风筒把气体和生料颗粒分离,收下的生料经卸料管进入Ⅱ级旋风筒的上升管道内进行第二次热交换,再经Ⅱ级旋风筒分离,如此,依次经Ⅴ级旋风预热器进入回转窑内进行煅烧,而预热器排出的废气经增湿塔,电收尘器由排风机进入大气.窑尾排出的1100℃烟气经预热器热交换后温度降至330℃左右,50℃左右的生料经多级预热器预热到750~820℃进入回转窑,熟料热耗均为750/kg熟料左右.

(2)预热预分解系统:

(原理)悬浮预热技术是指低温粉体物料均匀分散在高温气流之中,在悬浮状态下进行热交换,使物料得到迅速加热升温的技术.其优越性在于使物料悬浮在热气流中,与气流的接触面积大幅度增加,传热速度极快,效率极高.同时,生料粉与燃料在悬浮下均匀混合,燃料燃烧热及时传给物料,使之迅速分解.而预分解(或窑外分解)技术是指将已经过悬浮预热后的水泥生料,在达到分解温度前,进入到分解炉内与进入到炉内的燃料混合,在悬浮状态下迅速吸收燃料燃烧热,使生料中的碳酸钙迅速分解成氧化钙的技术.

这样不仅减少了窑内燃烧带的热负荷,并且入窑生料的碳酸钙分解率达到了95%左右,从而大幅度提高了窑系统的生产效率.

(3)悬浮预热预分解窑:

其的特点是在长度较短的回转窑后装设了悬浮预热器和分解炉,使原来在窑内以堆积状态进行的物料预热及碳酸钙分解过程,移到悬浮预热器和分解炉内以悬浮状态下进行,不仅可以减轻窑内煅烧带的热负荷,有利于缩小窑的规格及生产大型化,并且可以节约单位建设投资,延长衬料寿命,减少大气污染.

(4)五级旋风预热器:

主要是旋风筒和各级旋风筒之间的联接管道,(亦称换热管道)旋风筒的主要任务在于气固分离,联结管道主要起的是换热作用.

旋风筒:

采用大直径四圆心渐扩蜗壳结构,旋风筒阻力低,下部偏锥结构,下料管粗(C1φ710mm),能有效防堵;

合理的旋风筒整体高度;

有效防止物料因二次飞扬而导致的分离效率下降.

内筒:

内筒插入深度低,内径大,C1--C2级筒设置整流器,阻力明显下降,C3--C5级筒采用挂片,方便安装和更换,内筒材质为耐热钢,使用寿命较长.

NC型2500t/d旋风筒规格:

C1:

C2—Ф4600mm,出口气压约-6100Pa左右,筒内温度约330摄氏度左右.C2:

C1—Ф6500mm,筒内气压约-4400Pa左右温度约510℃左右.C3:

C1—Ф6800mm,筒内气压约-3600Pa左右,筒内温度约660℃左右.C4:

C1—Ф6800mm,筒内气压约-2500Pa左右,筒内温度约800℃左右.C5:

C1—Ф6800mm,筒内气压约-2000Pa左右,筒内温度约780℃左右.

导流板:

导流板的作用是防止进气口气流与筒内旋转气流碰撞,降低进口湍流阻力.本系统投料175t/h时,系统阻力仅4200Pa.

翻板阀:

下料管翻板阀位于上一级旋风筒下料管与下一级旋风筒上升管道之间,要求保持下料流畅的同时,封闭物料不能填充下料管.南京院设计的下料管杆轻锤小,材质为耐热钢,实用小巧.

撒料箱:

它会影响气固换热的效率,本系统采用的扩散式撒料箱为凸弧多孔分布板结构,这种撒料箱强化了物料在气流中的分散性,提高了气固换热的效率,降低了物料短路的可能.

(5)分解炉:

采用在线旋喷结合式管道分解炉.以喷腾分解炉为基础,”涡旋”结合.分解炉直接与窑尾烟室相接,避免了结皮和堵塞,三次风单侧切向进入,布局简单.分解炉出口在本体顶部缩径,气流获得二次加速,有效地加强了后期的混合,煤粉经过喷嘴从三次风端口切向向下倾斜,尽管炉用煤管为单通道,但也能确保预燃充分.生料经C4级筒收集由炉侧加入,受三次风的扰动,改善了其分布状态,减少了塌料的危险.操作中由于受配料的影响,生料易烧性差,将炉出口温度控制在910℃左右,C5级筒下料管890℃,从而保持一切正常.

4.6生料在各个反应带的物理和化学变化

生料在煅烧过程中,经历干燥,预热,分解,烧成,冷却阶段,发生了一系列物理化学变化;

100~200℃左右,生料被加热,水分被蒸发而干燥;

300~500℃左右,生料被预热;

500~800℃左右,粘土质矿物中的高岭石脱水分解为无定形的SiO2,Al2O3等,有机物燃尽;

800~1300℃左右,碳酸钙分解为CaO,并开始与粘土分解出的SiO2,Al2O3,Fe2O3发生固相反应.随着温度的继续升高,固相反应加速进行,并逐步形成硅酸二钙2CaO·

SiO2,铝酸三钙及铁铝酸四钙.当温度达到1300℃时固相反应完成,物种仅剩一部分CaO未与其它氧化物化合.当温度从1300℃升到1450℃再降到1300℃,即烧成阶段.这时3CaOAl2O3及4CaOAl2O3Fe2O3烧制部分熔融状态,液相出现,将所剩CaO和2CaOSiO2溶解,2CaOSiO2在液相中吸收CaO形成硅酸盐水泥的最重要矿物硅酸三钙3CaSiO2.这一过程是煅烧水泥的关键,必须达到足够的温度并停留适当长的时间,使充分形成3CaOSiO2.

4.6.1理论热耗

A.每公斤熟料所需原料:

碳酸钙约1.22Kg,粘土约0.20Kg,SiO2,0.10Kg,Fe2O3,0.03Kg,合计:

约1.55Kg.

B.每公斤熟料所需的热量(KCa):

(1)将粘土从20℃加热到430℃过程中

碳酸钙:

1.22×

0.248×

430=130.1KCa,粘土:

0.20×

430=21.3KCa,

二氧化硅:

0.10×

0.239×

430=10.3KCa,Fe2O3:

0.30×

0.190×

430=2.5KCa.

(2)粘土脱水0.20×

223=44.6KCa.

(3)从450℃加热至900℃过程中

1.22(0.266×

900-0.248×

430)=156KCa;

粘土:

0.17(0.258×

900-0.238×

430)KCa;

0.10(0.263×

900-0.19×

Fe2O3:

0.03(0.218×

430)-3.3KCa;

总计:

193.5KCa

(4)CaCO3加热分解成氧化钙和二氧化碳:

396=483KCa.

(5)将物料从900℃加热到1400℃

氧化钙:

77.5KCa;

24.8KCa;

14.1KCa;

氧化铁:

4.1KCa.合计:

120.5KCa.

(6)按熟料和硅酸三钙比热的差值来酸洗热量:

1450(0.265-0.247)=26.1KCa

1032KCa/Kg熟料

C.可回收的热量(KCa/Kg)

(1)熟料在1400℃形成的放热效应103.0KCa;

(2)熟料从1400℃冷却至20℃1380X0.261=360.2KCa;

(3)放出的二氧化碳从900℃冷却至20℃0.537X880X0.257=124.2KCa;

(4)水蒸气冷却热(450℃~100℃)0.03(3.50X0.375)=4.0KCa;

(5)水蒸气冷凝0.03X539=16KCa,水从100℃冷却至20℃0.03X80=2.4KCa.

609.8KCa约为610KCa.

所以熟料形成热为:

1032-610=422KCa/Kg熟料.

4.6.2回转窑系统个反应带内物料的物理化学反应进程

窑系统的在不同温度场的各个反应带内生料的物理,化学反应过程如下.但是由于温度及反应速率的不同,其中许多反应带在边缘地区有相当一部分是交叉的.

1,干燥带

承担生料中水分的蒸发任务.反应温度100℃,实际上物料的温度在大约20~50℃进入窑系统,超过露点温度后,大约在75~150℃水分蒸发,反应吸热约2675KJ/Kg,反应式:

H2O→H2O↑.

2,预热带

承担粘土质等原料中化学水的分解脱水任务.反应温度450℃,反应热很小.反应式:

Al2O32SiO2H2O→Al2O3+2SiO2+H2O↑.

3,碳酸盐分解带

主要承担碳酸镁及碳酸钙的分解任务.耗热量:

碳酸镁为815KJ/KgMgCO3.碳酸钙为:

1656KJ/KgCaCO3.由于生料中碳酸钙的含量多,故本带热量是很大的.同时,在分解带中还伴有CA,CF,C2F,C5A3等过渡矿物形成(一般在湿法及传统干法窑内形成较多,而在悬浮预热和预分解系统内形成较少).反应温度及反应式:

MgCO3→MgO+CO2↑(600~700℃)

CaCO3→CaO+CO2↑(650~900℃)

CaO+Al2O3→CaOAl2O3(800℃)

CaO+Fe2O3→CaOFe2O3(800℃)

CaO+CaOFe2O3→2CaOFe2O3(800℃)

3(CaOFe2O3)+2CaO→5CaO3Al2O3(900~950℃)

4,放热反应带(或称过渡带)

主要承担固相反应任务,为放热反应.放热量:

C2S形成放热602KJ/KgC2S,C4AF形成放热38KJ/KgC4AF,C3A形成放热109KJ/KgC3A(20℃时值).本带上部为炽热火焰,下部物料反应放热,故物料升温很快.反应温度及反应式如下:

2CaO+SiO2→2CaOSiO2(1000℃)

3(2CaOFe2O3)+5CaO3Al2O3+CaO→3(4CaOAl2O3Fe2O3)(1200~1300℃)

5CaO3Al2O3+4CaO→3(3CaOAl2O3)(1200~1300℃)

5,烧成带

主要承担燃料中的主要矿物C3S的形成,fCaO的吸收,完成燃料的最后烧成任务.在本带中的有1280℃开始出现液相,直到1450℃C3S大量形成,fCaO最后基本吸收,完成燃料的最后烧结过程,离开火焰高温区逐渐降温到1300℃左右进入冷却带.在该带1350℃~1450℃时液相量可达20%~30%,Al2O3,Fe2O3及其他组分进入液相.C3S形成为放热反应,放热量为447KJ/KgC3S.反应温度及反应式如下:

2CaOSiO2+CaO→3CaOSiO2(1280~1450℃)

6,冷却带

主要任务有三项,一是使熟料中的C3A,C4AF极少量C5A3重新结晶;

二是使部分液相形成玻璃体;

三是回收熟料中的热焓加热燃烧用空气.本带反应温度为1350℃~1200℃以下.由于新型篦冷机的出现,在预分解窑系统中,孰料的主要冷却任务已移到冷却机内进行.

4.7熟料的主要质量指标

表4.1熟料的主要质量指标

项目

控制指标

合格率

检测次数

升重

1375±

75

≥85%

1次/小时

f-CaO

1.5%

1次/2小时

化学成分

三率值

≥80%

1次/8小时

物理性能

1次/24小时

5水泥的制成

5.1熟料破碎

立窑熟料一般都有疏松多孔性脆的特点.出窑时经过卸料机械的挤压破碎粒度较均齐.最大料快不大于100~150mm,为满足输送,均和粉磨工序对熟料粒度的要求.在熟料进库前一般需要将其细度碎至30mm以下,常选用生产能力大于立窑台时产量的颚式,立轴锤式或冲击式破碎机进行破碎,其中以采用细碎颚式破碎机效果较好.它可以连续可靠地将熟料破碎至20mm以下,扬尘少,而且检修维修工作量不大.

5.2水泥粉磨

5.2.1水泥粉磨的功能和意义.

水泥粉磨是水泥制造的最后工序,也是耗电最多的工序.其主要功能在于将水泥熟料(及胶凝剂,性能调节材料等)粉磨至适宜的粒度(以细度,比表面积等表示),形成一定的颗粒级配,增大其水化面积,加速水化速度,满足水泥浆体凝结,硬化要求.

5.2.2影响粉磨作业动力消耗和生产能力的因素:

(1)物料的性质.

(2)被粉磨物料的粒度与产品的细度.

(3)粉磨作业系统与设备性能.

5.2.3水泥磨系统的开路与闭路系统.

开路系统:

在粉磨过程中当物料一次通过磨机后即为产品时称为开路系统.闭路系统:

当物料出磨后经过分级设备分出产品返回磨机内再磨称为闭路系统.由于闭路粉磨有利于水泥质量,且技术经济效果较好,因此闭路粉磨的钢球式磨机水泥粉磨系统中应用比较广泛.

5.3水泥包装

水泥出厂有袋装和散装两种发运方式.进料必须先经过回转筛将混入泥中的铁件杂物筛除,防止堵塞,保证包装机的正常运转.包装机和回转筛之间设置包装小仓以稳定物料流量,不作贮存用.包装好的袋水泥一般直接落入设于包装机下的平型胶带输送机送至成品库.

5.4制成工段工艺流程

图5.1制成工段工艺流程图(尧柏水泥一厂)

图5.2制成工段工艺流程图

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 艺术

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1