初中数学考试答题技巧备课讲稿Word下载.docx
《初中数学考试答题技巧备课讲稿Word下载.docx》由会员分享,可在线阅读,更多相关《初中数学考试答题技巧备课讲稿Word下载.docx(9页珍藏版)》请在冰豆网上搜索。
审题包括浏览全卷和细读试题两个方面。
一是开考前浏览。
开考前5分钟开始发卷,大家利用发卷至开始答题这段有限的时间,通过答前浏览对全卷有大致的了解,初步估算试卷难度和时间分配,据此统筹安排答题顺序,做到心中有数。
此时考生要做到“宠辱不惊”,也就是说,看到一道似曾相识的题时,心中不要窃喜,而要提醒自己,“这道题做时不可轻敌,小心有什么陷阱,或者做的题目只是相似,稍微的不易觉察的改动都会引起答案的不同”。
碰到一道从未见过,猛然没思路的题时,更不要受到干扰,相反,此时应开心,“我没做过,别人也没有。
这是我的机会。
”时刻提醒自己:
我易人易,我不大意;
我难人难,我不畏难。
二是答题过程中的仔细审题。
这是关键步骤,要求不漏题,看准题,弄清题意,了解题目所给条件和要求回答的问题。
不同的题型,考察不同的能力,具有不同的解题方法和策略,评分方式也不同,对不同的题型,审题时侧重点有所不同。
1.选择题是所占比例较大(40%)的客观性试题,考察的内容具体,知识点多,“双基”与能力并重。
对选择题的审题,要搞清楚是选择正确陈述还是选择错误陈述,采用特殊什么方法求解等。
2.填空题属于客观性试题。
一般是中档题,但是由于没有中间解题过程,也就没有过程分,稍微出现点错误就和一点不会做结果相同,“后果严重”。
审题时注意题目考查的知识点、方法和此类问题的易错点等。
3.解答题在试卷中所占分数较多(74分),不仅需要解出结果还要列出解题过程。
解答这种题目时,审题显得极其重要。
只有了解题目提供的条件和隐含信息,联想相关题型的通性通法,寻找和确定具体的解题方法和步骤,问题才能解决。
三、时间分配
近几年,随着高考数学试题中的应用问题越来越多,阅读量逐渐增加,科学地使用时间,是临场发挥的一项重要内容。
分配答题时间的基本原则就是保证在能得分的地方绝不丢分,不易得分的地方争取得分。
在心目
中应有“分数时间比”的概念,花10分钟去做一道分值为12分的中档大题无疑比用10分钟去攻克1道分值为4分的中档填空题更有价值。
有效地利用最好的答题时间段,通常各时间段内的答题效率是不同的,一般情况下,最后10分钟左右多数考生心理上会发生变化,影响正常答卷。
特别是那些还没有答完试卷的考生会分心、产生急躁心理,这个时间段效率要低于其它时间段。
在试卷发下来后,通过浏览全卷,大致了解试题的类型、数量、分值和难度,熟悉“题情”,进而初步确定各题目相应的作答时间。
通常一般水平的考生,解答选择题(12个)不能超过40分钟,填空题(4个)不能超过15分钟,留下的时间给解答题(6个)和验算。
当然这个时间安排还要因人而异。
在解答过程中,要注意原来的时间安排,譬如,1道题目计划用3分钟,但3分钟过后一点眉目也没有,则可以暂时跳过这道题;
但若已接近成功,延长一点时间也是必要的。
需要说明的是,分配时间应服从于考试成功的目的,灵活掌握时间而不墨守最初安排。
时间安排只是大致的整体调度,没有必要把时间精确到每1小题或是每1分钟。
更不要因为时间安排过紧,造成太大的心理压力,而影响正常答卷。
一般地,在时间安排上有必要留出5—10分钟的检查时间,但若题量很大,对自己作答的准确性又较为放心的话,检查的时间可以缩短或去除。
但是需要注意的是,通常数学试卷的设计只有少数优秀考生才可能在规定时间内答完。
五、大题和难题
一张考卷必不可少地要有大题、难题以区分考生的知识和能力水平,以便拉开档次。
一般大题、难题分值都较高,遇到难题,要尽量放到最后去攻克;
如果别的题目全部做完而且检查无误,而又有一定时间的话,就应想办法攻克难题。
不是每个人都能得150的,先把会的做完,也可以给自己奠定心里优势。
六、各种题型的解答技巧
1.选择题的答题技巧
(1)掌握选择题应试的基本方法:
要抓住选择题的特点,充分地利用选择支提供的信息,决不能把所有的选择题都当作解答题来做。
首先,看清试题的指导语,确认题型和要求。
二是审查分析题干,确定选择的范围与对象,要注意分析题干的内涵与外延规定。
三是辨析选项,排误选正。
四是要正确标记和仔细核查。
(2)特值法。
在选择支中分别取特殊值进行验证或排除,对于方程或不等式求解、确定参数的取值范围等问题格外有效。
(3)反例法。
把选择题各选择项中错误的答案排除,余下的便是正确答案。
(4)猜测法。
因为数学选择题没有选错倒扣分的规定,实在解不出来,猜测可以为你创造更多的得分机会。
除须计算的题目外,一般不猜A。
2.填空题答题技巧
(1)要求熟记的基本概念、基本事实、数据公式、原理,复习时要特别细心,注意记熟,做到临考前能准确无误、清晰回忆。
对那些起关键作用的,或最容易混淆记错的概念、符号或图形要特别注意,因为考查的往往就是它们。
如区间的端点开还是闭、定义域和值域要用区间或集合表示、单调区间误写成不等式或把两个单调区间取了并集等等。
(2)一般第4个填空题可能题意或题型较新,因而难度较大,可以酌情往后放。
3.解答题答题技巧
(1)仔细审题。
注意题目中的关键词,准确理解考题要求。
(2)规范表述。
分清层次,要注意计算的准确性和简约性、逻辑的条理性和连贯性。
(3)给出结论。
注意分类讨论的问题,最后要归纳结论。
(4)讲求效率。
合理有序的书写试卷和使用草稿纸,节省验算时间。
七、如何检查
在考试中,主动安排时间检查答卷是保证考试成功的一个重要环节,它是防漏补遗、去伪存真的过程,尤其是考生如果采用灵活的答题顺序,更应该与最后检查结合起来。
因为在你跳跃式往返答题过程中很可能遗漏题目,通过检查可弥补这种答题策略的漏洞。
检查过程的第一步是看有无遗漏或没有做的题目,发现之后,应迅速完成或再次思考解法。
对各类题型的做答过程和结果,如果有时间要结合草稿纸的解题过程全面复查一遍,时间不够,则重点检查。
选择题的检查主要是查看有无遗漏,并复查你心存疑虑的题目。
但是若没有充分的理由,一般不要改变你依据第一感觉作出的判断。
speak说spokespoken对解答题的检查,要注意结合审查草稿纸的演算过程,改正计算和推理中的错误。
另外要补充遗漏的理由和步骤,删去或修改错误或不准确的观点。
begin开始beganbegun计算题和证明题是检查的重点,要仔细检查是否完成了题目的全部要求;
若时间仓促,来不及验算的话,有一些简单的验证方法:
一是查单位是否有误;
二是看计算公式引用有无错误;
三是看结果是否比较“像”,这里所说的“像”是依靠经验判断,如应用题的答案是否符合实际意义;
数字结论是否为整数、自然数或有规则的表达式,若结论为小数或无规则的数,则要重新演算,最好能用其他方法再试着去做
blow吹blewblown动词原形中文意思过去式过去分词八、强调的一点是草稿纸,这是考试时和试卷同等重要的东西。
baby-sit临时照顾baby-satbaby-sat同学们拿到草稿纸后,请先将它三折。
然后按顺序使用。
草稿纸上每道题之间留空,标清题号。
字迹要做到能够准确辨认,切不可胡写乱画。
这样做的好处是:
dive跳水,俯冲dived/dovedived
擦亮shinedshinedweave编织wovewoven1.草稿纸展现的是你的答题思路。
草稿纸清晰,答题思路也会清晰,最起码你清楚你已经做到了哪一步。
如果草稿混乱的话,这一步推出来了,往往又忘了上一步是怎么得到的。
2.对于前面提到的暂时不会,回头再做的题,由于你第一次做本题时已经进行了一定的思维过程。
第二次做时如果重头再思考非常浪费时间。
利用草稿纸,可以迅速找到上次的思维断点。
从而继续攻破。
关键结论要特殊标记。
3.检查过程中,草稿纸更是最好的帮手。
如果连演算过程都可从草稿纸上清晰找到的话,无疑会节省大量时间。
say说saidsaid
shrink收缩shrank/shrunkshrunk/shrunken
sit坐satsat
tear撕裂toretorn
drive驾驶drovedrivenbecome变成becamebecome选择题并不难,
题目当中有答案,
特值排除找方法,
数形结合作对它;
填空题很容易,
最简结果要牢记,
区间开闭不分离,
多选题目想仔细;
解答题也容易,
基础大题莫放弃。
摆明条件讲道理。
步骤规范记心底。
别人难我不易
聚精会神审题意
多写步骤和推理,
分步得分来做题。
别人易我不难,
防止粗心是关键,
千方百计做答案,
时时刻刻细计算。
show显露showedshowed/shownhave/has有hadhad在初中数学几何学习中,如何添加辅助线是许多同学感到头疼的问题,许多同学常因辅助线的添加方法不当,造成解题困难。
以下是常见的辅助线作法编成了一些“顺口溜”歌诀。
人人都说几何难,难就难在辅助线。
辅助线,如何添?
把握定理和概念。
还要刻苦加钻研,找出规律凭经验。
图中有角平分线,可向两边作垂线。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
平行四边形出现,对称中心等分点。
梯形里面作高线,平移一腰试试看。
平行移动对角线,补成三角形常见。
证相似,比线段,添线平行成习惯。
等积式子比例换,寻找线段很关键。
直接证明有困难,等量代换少麻烦。
斜边上面作高线,比例中项一大片。
半径与弦长计算,弦心距来中间站。
圆上若有一切线,切点圆心半径连。
切线长度的计算,勾股定理最方便。
要想证明是切线,半径垂线仔细辨。
是直径,成半圆,想成直角径连弦。
弧有中点圆心连,垂径定理要记全。
圆周角边两条弦,直径和弦端点连。
弦切角边切线弦,同弧对角等找完。
如果遇到相交圆,不要忘作公共弦。
内外相切的两圆,经过切点公切线。
若是添上连心线,切点肯定在上面。
辅助线,是虚线,画图注意勿改变。
基本作图很关键,平时掌握要熟练。
解题还要多心眼,经常总结方法显。
切勿盲目乱添线,方法灵活应多变。
分析综合方法选,困难再多也会减。
虚心勤学加苦练,成绩上升成直线。
may可以might×
win获胜wonwonsmell发出气味smeltsmelt
有理数的加法运算:
同号相加一边倒;
异号相加“大”减“小”,符号跟着大的跑;
绝对值相等“零”正好。
[注]“大”减“小”是指绝对值的大小。
合并同类项:
合并同类项,法则不能忘,只求系数和,字母、指数不变样。
去、添括号法则:
去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号。
一元一次方程:
已知未知要分离,分离方法就是移,加减移项要变号,乘除移了要颠倒。
恒等变换:
两个数字来相减,互换位置最常见,正负只看其指数,奇数变号偶不变。
(a-b)2n+1=-(b-a)2n+1(a-b)2n=(b-a)2n平方差公式:
平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。
完全平方:
完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;
首±
尾括号带平方,尾项符号随中央。
因式分解:
一提(公因式)二套(公式)三分组,细看几项不离谱,两项只用平方差,三项十字相乘法,阵法熟练不马虎,四项仔细看清楚,若有三个平方数(项),就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上若都行不通,拆项、添项看清楚。
“代入”口决:
挖去字母换上数(式),数字、字母都保留;
换上分数或负数,给它带上小括弧,原括弧内出(现)括弧,逐级向下变括弧(小—中—大)
单项式运算:
加、减、乘、除、乘(开)方,三级运算分得清,系数进行同级(运)算,指数运算降级(进)行。
一元一次不等式解题的一般步骤:
去分母、去括号,移项时候要变号,同类项、合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了。
一元一次不等式组的解集:
大大取较大,小小取较小,小大,大小取中间,大小,小大无处找。
一元二次不等式、一元一次绝对值不等式的解集:
大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。
分式混合运算法则:
分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);
乘法进行化简,因式分解在先,分子分母相约,然后再行运算;
加减分母需同,分母化积关键;
找出最简公分母,通分不是很难;
变号必须两处,结果要求最简。
分式方程的解法步骤:
同乘最简公分母,化成整式写清楚,求得解后须验根,原(根)留、增(根)舍别含糊。
最简根式的条件:
最简根式三条件,号内不把分母含,幂指(数)根指(数)要互质,幂指比根指小一点。
特殊点坐标特征:
坐标平面点(x,y),横在前来纵在后;
(+,+),(-,+),(-,-)和(+,-),四个象限分前后;
X轴上y为0,x为0在Y轴。
象限角的平分线:
象限角的平分线,坐标特征有特点,一、三横纵都相等,二、四横纵确相反。
平行某轴的直线:
平行某轴的直线,点的坐标有讲究,直线平行X轴,纵坐标相等横不同;
直线平行于Y轴,点的横坐标仍照旧。
对称点坐标:
对称点坐标要记牢,相反数位置莫混淆,X轴对称y相反,Y轴对称,x前面添负号;
原点对称最好记,横纵坐标变符号。
自变量的取值范围:
分式分母不为零,偶次根下负不行;
零次幂底数不为零,整式、奇次根全能行。
函数图像的移动规律:
若把一次函数解析式写成y=k(x+0)+b、二次函数的解析式写成y=a(x+h)2+k的形式,则用下面的口诀“左右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了”。
一次函数图像与性质口诀:
一次函数是直线,图像经过仨象限;
正比例函数更简单,经过原点一直线;
两个系数k与b,作用之大莫小看,k是斜率定夹角,b与Y轴来相见,k为正来右上斜,x增减y增减;
k为负来左下展,变化规律正相反;
k的绝对值越大,线离横轴就越远。
二次函数图像与性质口诀:
二次函数抛物线,图象对称是关键;
开口、顶点和交点,它们确定图象现;
开口、大小由a断,c与Y轴来相见,b的符号较特别,符号与a相关联;
顶点位置先找见,Y轴作为参考线,左同右异中为0,牢记心中莫混乱;
顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见。
若求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换。
反比例函数图像与性质口诀:
反比例函数有特点,双曲线相背离的远;
k为正,图在一、三(象)限,k为负,图在二、四(象)限;
图在一、三函数减,两个分支分别减。
图在二、四正相反,两个分支分别添;
线越长越近轴,永远与轴不沾边。
巧记三角函数定义:
初中所学的三角函数有正弦、余弦、正切、余切,它们实际是三角形边的比值,可以把两个字用/隔开,再用下面的一句话记定义:
一位不高明的厨子教徒弟杀鱼,说了这么一句话:
正对鱼磷(余邻)直刀切。
正:
正弦或正切,对:
对边即正是对;
余:
余弦或余弦,邻:
邻边即余是邻;
切是直角边。
三角函数的增减性:
正增余减特殊三角函数值记忆:
首先记住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子记口诀“123,321,三九二十七”既可。
数字巧记:
=1.414(意思意思而已)=1.7321(三人一起商量)=2.236(吾量量山路)=2.449(粮食是酒)=2.645(二流是我)=2.828(二爸二爸)=3.16(山药,六两)
平行四边形的判定:
要证平行四边形,两个条件才能行,一证对边都相等,或证对边都平行,一组对边也可以,必须相等且平行。
对角线,是个宝,互相平分“跑不了”,对角相等也有用,“两组对角”才能成。
梯形问题的辅助线:
移动梯形对角线,两腰之和成一线;
平行移动一条腰,两腰同在“△”现;
延长两腰交一点,“△”中有平行线;
作出梯形两高线,矩形显示在眼前;
已知腰上一中线,莫忘作出中位线。
添加辅助线歌:
辅助线,怎么添?
找出规律是关键,题中若有角(平)分线,可向两边作垂线;
线段垂直平分线,引向两端把线连,三角形边两中点,连接则成中位线;
三角形中有中线,延长中线翻一番。
圆的证明歌:
圆的证明不算难,常把半径直径连;
有弦可作弦心距,它定垂直平分弦;
直径是圆最大弦,直圆周角立上边,它若垂直平分弦,垂径、射影响耳边;
还有与圆有关角,勿忘相互有关联,圆周、圆心、弦切角,细找关系把线连。
同弧圆周角相等,证题用它最多见,圆中若有弦切角,夹弧找到就好办;
圆有内接四边形,对角互补记心间,外角等于内对角,四边形定内接圆;
直角相对或共弦,试试加个辅助圆;
若是证题打转转,四点共圆可解难;
要想证明圆切线,垂直半径过外端,直线与圆有共点,证垂直来半径连,直线与圆未给点,需证半径作垂线;
四边形有内切圆,对边和等是条件;
如果遇到圆与圆,弄清位置很关键,两圆相切作公切,两圆相交连公弦。
圆中比例线段:
遇等积,改等比,横找竖找定相似;
不相似,别生气,等线等比来代替,遇等比,改等积,引用射影和圆幂,平行线,转比例,两端各自找联系。
正多边形诀窍歌:
份相等分割圆,n值必须大于三,依次连接各分点,内接正n边形在眼前。
经过分点做切线,切线相交n个点。
n个交点做顶点,外切正n边形便出现。
正n边形很美观,它有内接,外切圆,内接、外切都唯一,两圆还是同心圆,它的图形轴对称,n条对称轴都过圆心点,如果n值为偶数,中心对称很方便。
正n边形做计算,边心距、半径是关键,内切、外接圆半径,边心距、半径分别换,分成直角三角形2n个整,依此计算便简单。
函数学习口决:
正比例函数是直线,图象一定过圆点,k的正负是关键,决定直线的象限,负k经过二四限,x增大y在减,上下平移k不变,由引得到一次线,向上加b向下减,图象经过三个限,两点决定一条线,选定系数是关键。
反比例函数双曲线,待定只需一个点,正k落在一三限,x增大y在减,图象上面任意点,矩形面积都不变,对称轴是角分线x、y的顺序可交换。
二次函数抛物线,选定需要三个点,a的正负开口判,c的大小y轴看,△的符号最简便,x轴上数
交点,b的食物中毒结全算,a、b同号轴左边抛物线平移a不变,顶点牵着图象转,三种形式可变换,配方法作用最关键。