最新大学考试复习资料基础生物化学重点Word格式.docx

上传人:b****3 文档编号:16175749 上传时间:2022-11-21 格式:DOCX 页数:15 大小:88.90KB
下载 相关 举报
最新大学考试复习资料基础生物化学重点Word格式.docx_第1页
第1页 / 共15页
最新大学考试复习资料基础生物化学重点Word格式.docx_第2页
第2页 / 共15页
最新大学考试复习资料基础生物化学重点Word格式.docx_第3页
第3页 / 共15页
最新大学考试复习资料基础生物化学重点Word格式.docx_第4页
第4页 / 共15页
最新大学考试复习资料基础生物化学重点Word格式.docx_第5页
第5页 / 共15页
点击查看更多>>
下载资源
资源描述

最新大学考试复习资料基础生物化学重点Word格式.docx

《最新大学考试复习资料基础生物化学重点Word格式.docx》由会员分享,可在线阅读,更多相关《最新大学考试复习资料基础生物化学重点Word格式.docx(15页珍藏版)》请在冰豆网上搜索。

最新大学考试复习资料基础生物化学重点Word格式.docx

脂肪酸在一系列酶的作用下,羧基端的β-C原子发生氧化,碳链在α-C原子与β-C原子间发生断裂,每次生成一个乙酰CoA和较原来少两个碳单位的脂酰CoA,这个不断重复进行的脂肪酸氧化过程就叫β氧化。

24.乙醛酸循环:

是油料作物体内一条由脂肪酸转化为碳水化合物的途径,它将2分子乙酰COA转变为1分子琥珀酸的过程。

25.生物膜:

生物体内所有膜的总称,包括细胞质膜和各种细胞器的膜。

26.逆转录:

以RNA为模板,根据碱基配对原则,按照RNA的核苷酸顺序(RNA中的U用T替换)合成DNA

27.半保存复制:

每个子代DNA分子中,一条链来自于亲代DNA,另一条链是新形成的,这种复制方式就称为半保存复制。

28.半不连续复制:

DNA复制时,复制叉上的一条新链是连续合成的〔前导链〕,而另一条链是以一系列不连续的冈崎片段方式合成的,最后连接成一条完整的DNA新链〔随从链〕,这种复制方式被称为半不连续复制。

29.不对称转录:

在生物体内,DNA的两条链中仅有一条链〔或某一区段〕可作为转录的模板。

30.反义链(或模板链)与有义链(编码链):

基因的DNA双链中作为模板指导转录的那条单链称为反义链或模板链;

与反义链互补的那条DNA单链被称为有义链(编码链)。

31.复制叉:

在DNA的复制原点,双股螺旋解开,成单链状态,在起点处形成一个“眼〞状结构,在“眼〞的两端,则出现两个叉子状的生长点,称为复制叉。

32.核酸内切酶:

是一类能从多核苷酸链的内部水解3′,5′-磷酸二酯键降解核酸的酶。

33.生物固氮:

指固氮微生物在常温常压下将大气中的氮气转化为氨的过程。

34.密码子:

mRNA分子上由三个相邻的核苷酸组成一个密码子,代表某种氨基酸或肽链合成的起始或终止信号。

35.同工受体tRNA:

携带相同氨基酸而反密码子不同的一组tRNA称为同工受体tRNA。

36.诱导酶:

在正常代谢条件下不存在,当有诱导物〔底物〕存在时才合成的酶,常与分解代谢有关。

37.操纵子:

是DNA分子上一个结构连锁、功能相关的基因表达协同单位,它包括启动基因〔P〕、操纵基因〔O〕与结构基因(S)。

38.反响抑制:

代谢过程中后面的产物对其前某一调节酶活性具有抑制作用。

39.级联放大系统:

在连锁反响中,一个酶被共价修饰后,连续地发生其它酶被激活,导致原始调节信号放大的反响体系。

二、问答题

1.简述蛋白质一,二,三,四级结构特点,并指出维系各级结构稳定的作用力。

名称

结构特点

主要作用力

〔化学键〕

蛋白质一级结构

〔以胰岛素为例〕

51个氨基酸组成;

两条肽链;

三对二硫键

二硫键,肽键

蛋白质

二级结构

a螺旋

2.a螺旋每圈包含3.6个氨基酸残基,螺距为0.54nm

3.相邻两个氨基酸残基之间的轴心距为0.15nm

基团伸出螺旋

氢键

ß

折叠

 

蛋白质三级结构

〔以肌红蛋白为例〕

1.一条多肽链构成,有153个氨基酸残基和一个血红素辅基

3.极性氨基酸残基在分子外表;

非极性氨基酸残基在分子内部

主要是次级键〔如氢键,离子键,巯水键,范德华力〕;

也包括二硫键

蛋白质四级结构

〔以血红蛋白为例〕

2.由四条亚基〔2条a链和2条ß

链〕组成

4.亚基的三级结构与肌红蛋白相似

次级键

2.组成蛋白质氨基酸结构通式如何?

按照R基极性不同,20种氨基酸可被分为哪四类?

写出各类包含的氨基酸及其相应的三字符缩写。

AA通式:

按R基极性不同,将AA分为:

丙氨酸

Ala

甘氨酸

Gly

天冬氨酸

Asp

赖氨酸

Lys

缬氨酸

Val

丝氨酸

Ser

谷氨酸

Glu

精氨酸

Arg

亮氨酸

Leu

苏氨酸

Thr

组氨酸

His

异亮氨酸

Ile

半胱氨酸

Cys

脯氨酸

Pro

酪氨酸

Tyr

苯丙氨酸

Phe

天冬酰胺

Asn

色氨酸

Trp

谷氨酰胺

Gln

甲硫氨酸

Met

3.蛋白质变性蛋白质有何特点

①空间构象破坏。

维系蛋白质空间结构稳定的作用力遭到破坏,故构象改变。

②蛋白质原有的功能丧失。

如酶的催化活性丧失,肌红蛋白的转运功能丧失等。

③蛋白质性质改变:

溶解度降低;

粘度增加;

易被蛋白质酶水解

4.举例说明蛋白质结构与功能的关系。

〔包括一级结构和空间结构〕

●蛋白质一级结构与功能的关系:

蛋白质的功能取决于一级结构,当一级结构改变时,蛋白质的功能就会发生改变,例如镰刀状细胞贫血病就是一种因血红蛋白一级结构改变而产生的分子病。

正常人血红蛋白的ß

链N端第六位AA为Glu,而患者血红蛋白的ß

链第六位则为Val,结果引起血红蛋白分子外表极性下降,因而聚集成镰刀状。

●蛋白质空间结构与功能的关系:

蛋白质都有特定的构象,而这种构象是与他们各自的功能相适应,一旦空间结构改变,蛋白质的生物学功能也随之丧失。

例如把天然的核糖核酸酶用变性剂处理后,分子内部的二硫键断裂,肽链失去空间构象呈线形状态时,核糖核酸酶失去催化功能,当除去变性剂后,核糖核酸酶可逐渐恢复原有空间构象,则其催化RNA水解的功能可随之恢复。

5.简述DNA分子二级结构的主要特点

①两条核苷酸链平行,走向相反,且绕同一中心轴向右盘旋形成栓螺旋结构。

②两条由磷酸核脱氧核糖形成的主链骨架位于螺旋外侧,碱基位于内侧。

③两条链间存在碱基互补,通过氢键连系,A=T,G≡C碱基互补原则。

④碱基平面与螺旋纵轴接近垂直,糖环平面接近平行。

⑤螺旋的螺距为0.34nm,直径为2nm,相邻两个碱基对之间的垂直距离为0.34nm,每圈螺旋包含10个碱基对。

⑥螺旋结构中围绕中心轴形成两个凹槽即大沟与小沟。

6.比拟DNA,RNA在化学组成,细胞定位及生物功能上的区别

核酸

DNA

RNA

化学组成

戊糖

脱氧核糖

核糖

碱基

A、G、C、T

A、G、C、U

细胞定位

主要分布在细胞核内,少量分布在叶绿体和线粒体

大局部在细胞质中

生物学功能

遗传信息的载体

指导蛋白质的合成;

催化作用;

遗传信息的载体〔RNA病毒〕

6.简述tRNA二级,三级结构的特点

tRNA分子的二级结构呈三叶草型,即四臂四环,其中四臂包括氨基酸接受臂,二氢尿嘧啶臂,反密码子臂,TΨC臂,四环包括:

D环,反密码子环,TΨC环,额外环。

tRNA的三级结构呈倒L型。

7.何为米氏方程?

其中Km的物理意义是什么?

米氏方程是利用中间产物学说,推导出的一个表示底物浓度[S]与酶促反响速度V之间定量关系的数学方程式,即v=Vmax×

[S]/〔Km+[S])。

当反响速度〔V〕到达最大反响速度〔Vmax〕一半时的底物浓度,即v=Vmax/2时,Km=[S];

Km是酶的特征常数,其大小反映了酶与底物的亲和力。

8.简述酶的概念及酶作用的特点。

酶是由生物体活细胞产生,具有有催化功能的生物大分子,通常是蛋白质。

酶作用的特点:

1.高效性,即酶催化反响速度极高;

2.高度专一性,即酶对底物及其催化的反响有严格的选择性;

3.易变性,酶催化的反响条件温和一般要求在常温、常压、中性酸碱度等温和的条件下进行,在高温、强酸、强碱及重金属盐等环境中容易失去活性;

调控性,包括酶原激活、共价修饰调节、反响调节、激素调节等;

9.试述诱导契合学说的主要内容?

酶分子活性中心的结构原来并非和底物的结构互相吻合,但酶的活性中心是柔软的而非刚性的。

当底物与酶相遇时,可诱导酶活性中心的构象发生相应的变化,有关的各个基因到达正确的排列和定向,因而使酶和底物契合而结合成中间络合物,并引起底物发生反响。

10.影响酶促反响速度的因素有哪些?

它们如何影响反响速度?

〔1〕底物浓度[S]对酶反响速度〔V〕的影响〔见下列图〕:

用[S]对V作图,得到一矩形双曲线,当[S]很低时,V随[S]呈直线上升,表现为一级反响。

当[S]增加到足够大时,V几乎恒定,趋向于极限,表现为零级反响。

曲线说明,当[S]增加到一定数值后,酶作用出现了饱和状态,此时假设要增加V,则应增加酶浓度。

〔2〕酶浓度与反响速度:

在底物浓度足够大的条件下,酶浓度与酶促反响速度成正比〔见上图〕;

〔3〕温度:

过高或过低温度均使酶促反响速度下降,只有在最适温度下酶促反响速度才最高;

〔4〕pH:

pH影响酶蛋白质中各基团的解离状态,过高或过低pH均使酶促反响速度下降,在最适pH下酶促反响速度才最高;

〔5〕抑制剂:

作用于酶活性中心必需基团,引起酶活性下降或丧失,分为可逆抑制和不可逆抑制两种;

〔6〕激活剂:

提高酶活性,加快酶促反响速度的物质,包括无机离子、有机小分子或其他具有蛋白质性质的大分子。

11.简述糖酵解、三羧酸循环及磷酸戊糖途径的主要生物学意义

〔1〕糖酵解:

A为生物细胞活动提供能量;

B是糖类有氧氧化的前过程;

C提供糖异生作用的主要途径

D为其他代谢提供原料;

E是糖,脂肪和氨基酸代谢相联系的桥梁

〔2〕三羧酸循环:

A氧化获能的最有效方式;

B为其他生物合成代谢提供原料;

C是沟通物质代谢的枢纽

〔3〕磷酸戊糖途径:

A.PPP途径为细胞内的合成反响提供复原力NADPH+H+;

B.与光合作用联系;

C.PPP途径为细胞内核酸等物质合成提供原料;

D.与植物的抗病力相关;

E.与有氧、无氧分解相联系;

F.必要时供给能量

12.丙酮酸是一个重要的中间产物,简要写出五个不同的以丙酮酸为底物的酶促反响〔1〕丙酮酸+NADH+H+

 乳酸+NAD+P166

〔2〕丙酮酸+NAD++HSCoA

乙酰CoA+NADH+H++CO2

〔3〕丙酮酸+CO2+ATP+H2O

草酰乙酸+ADP+PiP172

〔4〕丙酮酸+NADPH+H++CO2

苹果酸+NADP+P173

〔5〕丙酮酸

乙醛+CO2P166

13.简要写出三个底物水平磷酸化反响

〔1〕1,3-二磷酸甘油酸+ADP

3-磷酸甘油酸+ATP

〔2〕磷酸烯醇式丙酮酸+ADP

丙酮酸+ATP

〔3〕琥珀酰CoA+GDP+Pi

琥珀酸+GTP+CoA-SH

14.简要写出八个氧化脱氢反响

(1)3-磷酸甘油醛+Pi+NAD+

1,3-二磷酸甘油酸+NADH+H+

〔2〕异柠檬酸+NAD+

α-酮戊二酸+CO2+NADH+H+

〔3〕α-酮戊二酸+HSCoA+NAD+

琥珀酰CoA+CO2+NADH+H+

〔4〕琥珀酸+FAD

延胡索酸+FADH2

〔5〕苹果酸+NAD+

草酰乙酸+NADH+H+

〔6〕6-磷酸葡萄糖+NADP+

6-磷酸葡萄糖酸内酯+NADPH+H+

〔7〕6-磷酸葡萄糖酸+NADP+

5-磷酸核酮糖+NADPH+H++CO2

〔8〕丙酮酸+NAD++HSCoA

乙酰CoA+NADH+H++CO2

15.简述生物氧化的三个阶段

第一阶段:

糖类、脂类和蛋白质等大分子降解成其根本结构单位。

单糖,甘油与脂肪酸,氨基酸,该阶段几乎不释放化学能。

第二阶段:

葡萄糖、脂肪酸、甘油和氨基酸等大分子根本结构单位,经糖酵解,脂肪酸β氧化,氨基酸脱氨基氧化等降解途径分解为丙酮酸或乙酰CoA等少数几种共同的中间代谢物,该阶段释放少量的能量。

第三阶段:

丙酮酸、乙酰CoA等经过三羧酸循环彻底氧化为二氧化碳,水,释放大量的能量。

氧化脱下的氢经呼吸链将电子传递给氧生成水,释放出大量能量,氧化过程中释放出来的能量用于ATP合成。

16.简述化学渗透学说关于氧化磷酸化机理的主要内容

化学渗透假说是由英国生物化学家米歇尔首先提出来的,该假说的内容要点如下:

①呼吸链中递氢体和递电子体体交替排列,有序的定位于线粒体内膜上,是氧化复原反响定向进行。

②电子传递链的复合体中的递氢体有质子泵的作用。

它可以将H+从线粒体内膜的内侧泵至外侧。

③线粒体内膜本身具有选择透过性,不能让泵出的H+返回膜内,产生电化学梯度。

④线粒体内膜上的ATP合酶复合体能使质子回流。

电化学梯度消失,并且释放能量。

⑤质子则从膜间空间通过ATP合成酶复合物上的质子通道进入基质,同时驱动ATP合成酶合成ATP。

17.计算:

NAD+/NADH+H+的ΔEo′=-0.32V,O2/H2O的ΔEo′=+0.82V,ATP水解的ΔGo′=-30.54kJ/mol,F=96.5kJ/v.mol,请计算NADH经呼吸链氧化生成水时的ΔGo′。

解:

反响的总反响式为:

NADH+H++1/2O2→NAD++H2O

NAD+/NADH+H+的Eo

O2/H2O的Eo

ΔEo-〔-0.32V〕=1.14V

ΔGo′=-nFΔEo′=-2*96.54*1.14=-220KJ(V*mol)-1

答:

NADH经呼吸链氧化生成水时的ΔGo′为-220KJ(V*mol)-1。

18.比拟脂肪酸β-氧化和从头合成的区别,完成下表。

区别要点

软脂酸从头合成

软脂酸β-氧化

细胞中进行部位

细胞质

线粒体

酰基载体

ACP

CoA

二碳单位参与或断裂形式

丙二酸单酰CoA

乙酰CoA

电子供体或受体

NADPH

FAD,NAD

反响过程

羧化、启动、缩合、复原、

脱水、再复原

活化、脱氢、水合、再脱氢、硫解

反响方向

CH3→COOH

COOH→CH3

羟脂酰基中间体立体异构物

D型

L型

对HCO3-和柠檬酸的需求

要求

不要求

酶系

7种酶、蛋白组成复合体

4种酶

能量变化

消耗7个ATP、14个NADPH

产生106个ATP

19.简述乙醛酸循环的生物学意义

1.是油料作物体内把脂肪转化为碳水化合物的途径

2.补充TCA循环中的四碳化合物

20.简述乙酰CoA的来源和去路

乙酰CoA的主要来源:

丙酮酸氧化脱羧;

脂肪酸β-氧化;

氨基酸氧化分解

乙酰CoA的代谢去路:

可彻底氧化转化为二氧化碳、水和能量;

可从头合成为脂肪酸;

可转化成酮体;

可合成胆固醇。

21.计算1分子月桂酸〔12个C〕经过生物氧化作用彻底分解为CO2和H2O时生成ATP的分子数〔写出总反响式并列出计算过程〕。

月桂酸+ATP+5NAD++6CoASH+5FAD+7H2O→6乙酰CoA+5FADH2+5NADH+5H++AMP+PPi

注:

此反响式可以不用写,但要说明1分子月桂酸彻底氧化经过5次β氧化循环,产生6乙酰CoA,5FADH2和5NADH+5H+

●1分子乙酰CoA进入三羧酸循环彻底氧化共生成10分子ATP,因此6分子乙酰CoA生成6×

10=60ATP。

●5FADH2:

1.5=7.5ATP

●5NADH+5H+:

2.5=12.5ATP

共计产生60+7.5+12.5=80ATP,另外活化消耗了2ATP,因此一共净产生78ATP。

22.试述脂代谢与糖代谢的相互关系

图示之后,还应辅以文字表达,以进一步解释二者之间的转换关系。

23.简述参与DNA复制的酶系及其作用。

主要参与成分

主要作用

1、DNApol

新链延伸;

切除引物

2、引物合成酶

合成引物

3、NDA连接酶

连接切口

4、拓扑异构酶

解螺旋

5、解螺旋酶

解双链

6、SSB等

保护单链

7、引发体

识别复制原点

24.简述DNA复制与RNA转录的过程。

复制:

1、起始〔1〕识别〔引发体识别复制原点〕

〔2〕解链

〔3〕稳定〔SSB结合解开的单链〕

〔4〕引物〔引物酶催化合成RNA引物〕

2、延伸当RNA引物合成之后,在DNA聚合酶Ⅲ的催化下,以4种脱氧核糖三磷酸为底物,在RNA引物的3′端以磷酸二酯键连接上脱氧核糖核酸并释放PPi

3、终止〔1〕切除〔DNA聚合酶Ⅰ切除RNA引物〕

〔2〕填补〔DNA聚合酶Ⅰ填补缺口〕

〔3〕连接〔DNA连接酶连接相邻的DNA片段〕

转录:

1、起始〔1〕〔在σ亚基帮助下〕RNApol识别并结合在启动子-35区

〔2〕在启动子-10区与RNApol紧密结合,DNA构象改变,局部双链翻开

〔3〕在启动子+1处,RNApol结合ATP或GTP(少见)——第一个核苷酸

〔4〕亚基离开复合体——核心酶

2、延伸〔1〕核心酶沿DNA模板3′→5′移动;

〔2〕新RNA链沿5′→3′不断延伸

〔3〕新RNA链离开模板,DNA重新形成双链

3、终止核心酶沿模板3′→5′方向移动到终止子,转录终止,并释放已转录完成的RNA链。

25.比拟嘌呤核苷酸与嘧啶核苷酸从头合成的异同,完成下表。

比拟

嘌呤核苷酸

嘧啶核苷酸

相同点

1、原料:

磷酸核糖、Asp、Gln、CO2

2、都有从头合成和补救合成途径

3、都合成一个相关核苷酸

不同点

1、在PRPP上合成嘌呤环

1、先合成嘧啶环再与PRPP结合

2、先合成IMP

2、先合成OMP

3、Gly、甲酸盐为原料

3、Gly、甲酸盐不为原料

26.比拟复制与转录过程,完成下表

过程

复制

转录

作用机理

〔脱氧〕核苷酸的3‘-OH进攻另一〔脱氧〕核苷酸的α磷酸基团,形成磷酸二酯键。

原则

碱基互补配对

模板

合成方向

5’→3’

底物

dNTP

NTP

两条DNA单链

一条DNA单链

参与酶

DNA聚合酶;

引物酶;

连接酶;

拓扑异构酶;

解旋酶;

SSB

RNA聚合酶

有无引物

产物

子代DNA

方式

不连续复制

不对称转录

27.试述脂代谢与蛋白质代谢、蛋白质代谢与糖代谢的相互关系。

28.遗传密码如何编码?

有哪些根本特性?

遗传密码是mRNA分子中的核苷酸残基序列与蛋白质中的氨基酸残基序列之间的对应关系。

每3个连续的核苷酸残基序列为一个密码子,特指一个氨基酸。

标准的遗传密码是由64个密码子组成的,几乎为所有生物通用。

其特点有:

①方向性:

阅读密码子要遵循mRNA5ˊ→3ˊ方向进行;

②无标点性与无重叠性:

任何密码子之间没有任何标点符号隔开,同时,碱基不能重复使用;

③简并性:

同一种氨基酸有两个或更多密码子的现象称为密码子的简并性,Met和Trp各只有一个密码子之外,其余每种氨基酸都有2~6个密码子;

④根本通用性:

不同生物都使用同一套密码;

⑤变偶性:

在密码子与反密码子相互识别的过程中,密码子的第三位碱基有较大的灵活性,可以不完全遵循碱基互补配对原则。

29.简述三种RNA在蛋白质的生物合成中是如何起作用的?

〔1〕mRNA:

作为蛋白质生物合成的模板,是遗传信息的载体,决定多肽链中氨基酸的排列顺序,mRNA中每三个相邻的核苷酸组成三联体密码子,代表一个氨基酸的信息。

〔2〕tRNA:

蛋白质合成中氨基酸运载工具,为每个三联体密码子译成氨基酸提供接合体,准确无误地将活化的氨基酸运送到核糖体中mRNA模板上。

〔3〕rRNA:

与多种蛋白质结合而成核糖体,是蛋白质生物合成的场所,又称肽链合成的“装配机〞。

30.简述蛋白质生物合成的根本过程。

〔1〕氨基酸的活化:

在氨酰-tRNA合成酶的催化下,消耗相当于2分子ATP的能量,1分子氨基酸与对应的特异tRNA3ˊ-末端CCA-OH结合形成1分子氨酰-tRNA。

〔2〕肽链合成的起始:

在起始因子的协助下,核糖体大、小亚基,mRNA和起始氨酰-tRNA共同组装成70S起始复合物,此时,起始密码子AUG定位于核糖体的P位。

对每条肽链合成来说,起始阶段仅需一次,耗能1分子GTP

〔3〕肽链的延伸:

在延长因子的协助下,一分子新的氨酰tRNA结合到核糖体的A位〔进位〕,肽酰转移酶催化P位上的肽酰基转移到A位的氨基酸上形成肽键〔转肽〕,核糖体沿mRNA5′→3′方向移动一个密码子的距离,空出A位等待下一分子氨酰tRNA进入〔移位〕。

进位、转肽、移位三步为一次循环,每次循环要消耗2分子GTP,同时肽链增加一个氨基酸残基。

〔4〕肽链合成的终止:

核糖体移动到终止密码子时,在终止因子的协助下,肽酰转移酶活性转变为水解活性,合成好的肽链解离,核糖体大、小亚基,mR

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 军事

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1