PID参数整定调节方法Word下载.docx

上传人:b****5 文档编号:16161589 上传时间:2022-11-21 格式:DOCX 页数:7 大小:32.76KB
下载 相关 举报
PID参数整定调节方法Word下载.docx_第1页
第1页 / 共7页
PID参数整定调节方法Word下载.docx_第2页
第2页 / 共7页
PID参数整定调节方法Word下载.docx_第3页
第3页 / 共7页
PID参数整定调节方法Word下载.docx_第4页
第4页 / 共7页
PID参数整定调节方法Word下载.docx_第5页
第5页 / 共7页
点击查看更多>>
下载资源
资源描述

PID参数整定调节方法Word下载.docx

《PID参数整定调节方法Word下载.docx》由会员分享,可在线阅读,更多相关《PID参数整定调节方法Word下载.docx(7页珍藏版)》请在冰豆网上搜索。

PID参数整定调节方法Word下载.docx

目前,PID控制及其控制器或智能PID控制器(仪表)已经很多,产品已在工程实际中得到了广泛的应用,有各种各样的PID控制器产品,各大公司均开发了具有PID参数自整定功能的智能调节器(intelligentregulator),其中PID控制器参数的自动调整是通过智能化调整或自校正、自适应算法来实现。

有利用PID控制实现的压力、温度、流量、液位控制器,能实现PID控制功能的可编程控制器(PLC),还有可实现PID控制的PC系统等等。

可编程控制器(PLC)是利用其闭环控制模块来实现PID控制,而可编程控制器(PLC)

可以直接与ControlNet相连,如Rockwell的PLC-5等。

还有可以实现PID控制功能的控制器,如Rockwell的Logix产品系列,它可以直接与ControlNet相连,利用网络来实现其远程控制功能。

1、开环控制系统

开环控制系统(open-loopcontrolsystem是指被控对象的输出(被控制量)对控制器(controller)的输出没有影响。

在这种控制系统中,不依赖将被控量反送回来以形成任何闭环回路。

2、闭环控制系统

闭环控制系统(closed-loopcontrolsystem)的特点是系统被控对象的输出(被控制量)会反送回来影响控制器的输出,形成一个或多个闭环。

闭环控制系统有正反馈和负反馈,若反馈信号与系统给定值信号相反,则称为负反馈(NegativeFeedback)若极性相同,则称为正反馈,一般闭环控制系统均采用负反馈,又称负反馈控制系统。

闭环控制系统的例子很多。

比如人就是一个具有负反馈的闭环控制系统,眼睛便是传感器,充当反馈,人体系统能通过不断的修正最后作出各种正确的动作。

如果没有眼睛,就没有了反馈回路,也就成了一个开环控制系统。

另例,当一台真正的全自动洗衣机具有能连续检查衣物是否洗净,并在洗净之后能

自动切断电源,它就是一个闭环控制系统。

3、阶跃响应

阶跃响应是指将一个阶跃输入(stepfunction)加到系统上时,系统的输出。

稳态误差是指系统的响应进入稳态后,系统的期望输出与实际输出之差。

控制系

统的性能可以用稳、准、快三个字来描述。

稳是指系统的稳定性(stability),—个系统要能正常工作,首先必须是稳定的,从阶跃响应上看应该是收敛的;

准是指控制系统的准确性、控制精度,通常用稳态误差来(Steady-stateerror)描述,它表示系统输出稳态值与期望值之差;

快是指控制系统响应的快速性,通常用上升时间来定

量描述。

4、PID控制的原理和特点

在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简

称PID控制,又称PID调节。

PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。

当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用

PID控制技术最为方便。

即当我们不完全了解一个系统和被控对象,或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。

PID控制,实际中也有PI和PD控制。

PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。

比例(P)控制

比例控制是一种最简单的控制方式。

其控制器的输出与输入误差信号成比例关系。

当仅有比例控制时系统输出存在稳态误差(Steady-stateerro)r。

积分(I)控制

在积分控制中,控制器的输出与输入误差信号的积分成正比关系。

对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(SystemwithSteady-stateErro))为了消除稳态误差,在控制器中必须引入“积分项”。

积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。

这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。

因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。

微分(D)控制

在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。

自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。

其原因是由于存在有较大惯性组件(环节)或有滞后(delay)组件,具有抑制误差的作用,其变化总是落后于误差的变化。

解决的办法是使抑制误差的作用的变化“超前”即在误差接近零时,抑制误差的作用就应该是零。

这就是说,在控制器中仅引入“比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”它,能预测误差变化的趋势,这样,具有比例+微分的控制器,就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。

所以对有较大惯性或滞后的被控对象,比例+微分(PD)控制器能改善系统在调节过程中的动态特性。

5、PID控制器的参数整定

PID控制器的参数整定是控制系统设计的核心内容。

它是根据被控过程的特性确定PID控制器的比例系数、积分时间和微分时间的大小。

PID控制器参数整定的方法很多,概括起来有两大类:

一是理论计算整定法。

它主要是依据系统的数学模型,经过理论计算确定控制器参数。

这种方法所得到的计算数据未必可以直接用,还必须通过工程实际进行调整和修改。

二是工程整定方法,它主要依赖工程经验,

直接在控制系统的试验中进行,且方法简单、易于掌握,在工程实际中被广泛采用。

PID控制器参数的工程整定方法,主要有临界比例法、反应曲线法和衰减法。

三种方法各有其特点,其共同点都是通过试验,然后按照工程经验公式对控制器参数进行整定。

但无论采用哪一种方法所得到的控制器参数,都需要在实际运行中进行最后调整与完善。

现在一般采用的是临界比例法。

利用该方法进行PID控制器参数的整定步骤如下:

(1)首先预选择一个足够短的采样周期让系统工作;

(2)仅加入

比例控制环节,直到系统对输入的阶跃响应出现临界振荡,记下这时的比例放大系

数和临界振荡周期;

(3)在一定的控制度下通过公式计算得到PID控制器的参数。

PID参数的设定:

是靠经验及工艺的熟悉,参考测量值跟踪与设定值曲线,从而调整P\I\D的大小。

PID控制器参数的工程整定,各种调节系统中P丄D参数经验数据以下可参照:

温度T:

P=20~60%,T=180~600s,D=3-180s

压力P:

P=30~70%,T=24~180s,

液位L:

P=20~80%,T=60~300s,

流量L:

P=40~100%,T=6~60s。

书上的常用口诀:

参数整定找最佳,从小到大顺序查先是比例后积分,最后再把微分加曲线振荡很频繁,比例度盘要放大曲线漂浮绕大湾,比例度盘往小扳曲线偏离回复慢,积分时间往下降曲线波动周期长,积分时间再加长曲线振荡频率快,先把微分降下来

动差大来波动慢。

微分时间应加长

理想曲线两个波,前高后低4比1

一看二调多分析,调节质量不会低

这里介绍一种经验法。

这种方法实质上是一种试凑法,它是在生产实践中总结出来的行之有效的方法,并在现场中得到了广泛的应用。

这种方法的基本程序是先根据运行经验,确定一组调节器参数,并将系统投入闭

环运行,然后人为地加入阶跃扰动(如改变调节器的给定值),观察被调量或调节

器输出的阶跃响应曲线。

若认为控制质量不满意,则根据各整定参数对控制过程的影响改变调节器参数。

这样反复试验,直到满意为止。

经验法简单可靠,但需要有一定现场运行经验,整定时易带有主观片面性。

当采用PID调节器时,有多个整定参数,反复试凑的次数增多,不易得到最佳整定参数。

下面以PID调节器为例,具体说明经验法的整定步骤:

⑴让调节器参数积分系数S0=0,实际微分系数k=0,控制系统投入闭环运行,由小到大改变比例系数S1,让扰动信号作阶跃变化,观察控制过程,直到获得满意的控制过程为止。

⑵取比例系数S1为当前的值乘以0.83,由小到大增加积分系数S0,同样让扰动信号作阶跃变化,直至求得满意的控制过程。

(3)积分系数S0保持不变,改变比例系数S1,观察控制过程有无改善,如有改善则继续调整,直到满意为止。

否则,将原比例系数S1增大一些,再调整积分系数SO,力求改善控制过程。

如此反复试凑,直到找到满意的比例系数S1和积分系数S0为止。

⑷引入适当的实际微分系数k和实际微分时间TD,此时可适当增大比例系数S1和积分系数SO。

和前述步骤相同,微分时间的整定也需反复调整,直到控制过程满意为止。

注意:

仿真系统所采用的PID调节器与传统的工业PID调节器有所不同,各个参数之间相互隔离,互不影响,因而用其观察调节规律十分方便。

PID参数是根据控制对象的惯量来确定的。

大惯量如:

大烘房的温度控制,一般

P可在10以上,l=3-10,D=1左右。

小惯量如:

一个小电机带

一水泵进行压力闭环控制,一般只用PI控制。

P=1-10,I=0.1-1,D=0,这些要在现场调试时进行修正的。

我提供一种增量式PID供大家参考

△U(k)=Ae(k)-Be(k-1)+Ce(k-2)

A=Kp(1+T/Ti+Td/T)

B=Kp(1+2Td/T)

C=KpTd/T

T采样周期Td微分时间Ti积分时间

用上面的算法可以构造自己的PID算法。

U(K)=U(K-1)+△U(K)

PID调节器的适用范围

PID调节控制是一个传统控制方法,它适用于温度、压力、流量、液位等几

乎所有现场,不同的现场,仅仅是PID参数应设置不同,只要参数设置得当均可

以达到很好的效果。

均可以达到0.1%,甚至更高的控制要求。

2.PID参数的意义和作用指标分析

P、I、D:

y=yP+yi+yd

2.1.P参数设置

名称:

比例带参数,单位为(%)。

比例作用定义:

比例作用控制输出的大小与误差的大小成正比,当误差占量程的

百分比达到P值时,比例作用的输出=100%,这P就定义为比例带参数。

yp=X100%=x10

0%=Kp•Err

(1)

(其中:

yp二KP・△、△二SP-PV取0-100%)

KP=1/(FS-P)

也可以理解成,当误差达到量程乘以P(%)时,比例作用的输出达100%

例:

对于量程为0-130

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 初中教育 > 其它课程

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1