薛定谔方程文档格式.docx

上传人:b****5 文档编号:16073963 上传时间:2022-11-18 格式:DOCX 页数:22 大小:216.20KB
下载 相关 举报
薛定谔方程文档格式.docx_第1页
第1页 / 共22页
薛定谔方程文档格式.docx_第2页
第2页 / 共22页
薛定谔方程文档格式.docx_第3页
第3页 / 共22页
薛定谔方程文档格式.docx_第4页
第4页 / 共22页
薛定谔方程文档格式.docx_第5页
第5页 / 共22页
点击查看更多>>
下载资源
资源描述

薛定谔方程文档格式.docx

《薛定谔方程文档格式.docx》由会员分享,可在线阅读,更多相关《薛定谔方程文档格式.docx(22页珍藏版)》请在冰豆网上搜索。

薛定谔方程文档格式.docx

▪5.3.1证明

o5.4完备基底

∙6相对论性薛定谔方程

∙7解析方法

∙8实例

o8.1自由粒子

o8.2一维谐振子

o8.3球对称位势

▪8.3.1角部分解答

▪8.3.2径向部分解答

∙9参阅

∙10参考文献

∙11外部链接

[编辑]含时薛定谔方程

虽然,含时薛定谔方程能够启发式地从几个假设导引出来。

理论上,我们可以直接地将这方程当作一个基本假定。

在一维空间里,一个单独粒子运动于位势

中的含时薛定谔方程为

(1)

其中,

是质量,

是位置,

是相依于时间

的波函数,

是约化普朗克常数,

是位势。

类似地,在三维空间里,一个单独粒子运动于位势

(2)

假若,系统内有

个粒子,则波函数是定义于

-位形空间,所有可能的粒子位置空间。

用方程表达,

其中,波函数

的第

个参数是第

个粒子的位置。

所以,第

个粒子的位置是

[编辑]不含时薛定谔方程

不含时薛定谔方程不相依于时间,又称为本征能量薛定谔方程,或定态薛定谔方程。

顾名思义,本征能量薛定谔方程,可以用来计算粒子的本征能量与其它相关的量子性质。

应用分离变量法,猜想

的函数形式为

是分离常数,

是对应于

的函数.稍回儿,我们会察觉

就是能量.

代入这猜想解,经过一番运算,含时薛定谔方程

(1)会变为不含时薛定谔方程:

类似地,方程

(2)变为

[编辑]历史背景与发展

爱因斯坦诠释普朗克的量子为光子,光波的粒子;

也就是说,光波具有粒子的性质,一种很奇奥的波粒二象性。

他建议光子的能量与频率成正比。

在相对论里,能量与动量之间的关系跟频率与波数之间的关系相同,所以,连带地,光子的动量与波数成正比。

1924年,路易·

德布罗意提出一个惊人的假设,每一种粒子都具有波粒二象性。

电子也有这种性质。

电子是一种波动,是电子波。

电子的能量与动量决定了它的物质波的频率与波数。

1927年,克林顿·

戴维孙和雷斯特·

革末将缓慢移动的电子射击于镍晶体标靶。

然后,测量反射的强度,探测结果与X射线根据布拉格定律(Bragg'

slaw)计算的衍射图案相同。

戴维森-革末实验彻底的证明了德布罗意假说。

薛定谔夜以继日地思考这些先进理论,既然粒子具有波粒二象性,应该会有一个反应这特性的波动方程,能够正确地描述粒子的量子行为。

于是,薛定谔试着寻找一个波动方程。

哈密顿先前的研究引导著薛定谔的思路,在牛顿力学与光学之间,有一种类比,隐蔽地暗藏于一个察觉里。

这察觉就是,在零波长极限,实际光学系统趋向几何光学系统;

也就是说,光射线的轨道会变成明确的路径,遵守最小作用量原理。

哈密顿相信,在零波长极限,波传播会变为明确的运动。

可是,他并没有设计出一个方程来描述这波行为。

这也是薛定谔所成就的。

他很清楚,经典力学的哈密顿原理,广为学术界所知地,对应于光学的费马原理。

借着哈密顿-雅可比方程,他成功地创建了薛定谔方程。

薛定谔用自己设计的方程来计算氢原子的谱线,得到了与用玻尔模型计算出的能级相同的答案。

但是,薛定谔对这结果并不满足,因为,索末菲似乎已经正确地计算出氢原子光谱线精细结构常数的相对论性的修正。

薛定谔试着用相对论的能量动量关系式,来寻找一个相对论性方程(现今称为克莱因-高登方程),可以描述电子在库仑位势内的量子行为。

薛定谔计算出这方程的定态波函数。

可是,相对论性的修正与索末菲的公式有分歧。

虽然如此,他认为先前非相对论性的部分,仍旧含有足够的新结果。

因此,决定暂时不发表相对论性的修正,只把他的波动方程与氢原子光谱分析结果,写为一篇论文。

1926年,正式发表于物理学界[2]。

从此,给予了量子力学一个新的发展平台。

薛定谔方程漂亮地解释了

的行为,但并没有解释

的意义。

薛定谔曾尝试解释

代表电荷的密度,但却失败了。

1926年,就在薛定谔第四篇的论文发表之后几天,马克斯·

玻恩提出概率幅的概念,成功地解释了

的物理意义[3]。

可是,薛定谔本人一直不承认这种统计或概率的表示方法,和它所伴随的非连续性波函数坍缩。

就像爱因斯坦的认为量子力学是基本为确定性理论的统计近似,薛定谔永远无法接受哥本哈根诠释。

在他有生最后一年,他写给马克斯·

玻恩的一封信内,薛定谔清楚地表明了这看法。

[编辑]含时薛定谔方程导引

[编辑]启发式导引

含时薛定谔方程的启发式导引,建立于几个假设:

[编辑]假设

(1)一个粒子的总能量

可以经典地表达为动能

与势能

的和:

是动量,

是质量。

特别注意,能量

与动量

也出现于以下两个关系方程。

(2)1905年,爱因斯坦于提出光电效应时,指出光子的能量

与对应的电磁波的频率

成正比:

是普朗克常数,

是角频率。

(3)1924年,路易·

德布罗意提出德布罗意假说,说明所有的粒子都具有波的性质,可以用一个波函数

来表达。

粒子的动量

与伴随的波函数的波长

有关:

是波数。

用矢量表达,

[编辑]波函数以复值平面波来表达波函数

1925年,薛定谔发现平面波的相位,可用一个相位因子来表示:

他想到

因此

并且相同地由于

因此得到

再由经典力学的公式,一个粒子的总能为

,质量为

,在势能

处移动:

薛定谔得到一个单一粒子在一维空间有势能之处移动时的方程:

[编辑]薛定谔的导引

思考一个粒子,运动于一个保守的位势

我们可以写出它的哈密顿-雅可比方程

是哈密顿主函数。

由于位势显性地不相依于时间,哈密顿主函数可以分离成两部分:

其中,不相依于时间的函数

是哈密顿特征函数,

是能量。

将哈密顿主函数公式代入粒子的哈密顿-雅可比方程,稍加运算,可以得到

哈密顿主函数随时间的全导数是

思考哈密顿主函数

的一个常数的等值曲面

这常数的等值曲面

在空间移动的方程为

所以,在设定等值曲面的正负面后,

朝着法线方向移动的速度

这速度

是相速度,而不是粒子的移动速度

我们可以想像

为一个相位曲面。

既然粒子具有波粒二象性,试着给予粒子一个相位与

成比例的波函数:

是常数,

是相依于位置的系数函数。

将哈密顿主函数的公式代入

波函数,成为

注意到

的量纲必须是频率,薛定谔突然想起爱因斯坦的光电效应理论

设定

,粒子的波函数

变为

的波动方程为

波函数代入波动方程,经过一番运算,得到

稍加编排,可以导引出薛定谔方程:

[编辑]特性

[编辑]线性方程

主条目:

态叠加原理

薛定谔方程是一个线性方程。

满足薛定谔方程的波函数拥有线性关系。

假若

是某薛定谔方程的解。

设定

是任何常数。

也是一个解。

[编辑]证明

根据不含时薛定谔方程

(1),

线性组合这两个方程的解,

所以,

也是这含时薛定谔方程的解,证明含时薛定谔方程是一个线性方程。

类似地,我们可以证明不含时薛定谔方程是一个线性方程。

[编辑]实值的本征态

不含时薛定谔方程的波函数解答,也符合线性关系。

但在这状况,线性关系有稍微不同的意义。

假若两个波函数

都是某不含时薛定谔方程的,能量为

的解答,则这两个不同的波函数解答为简并的。

任何线性组合也是能量为

的解答。

对于任何位势,都有一个明显的简并:

假若波函数

是某薛定谔方程的解答,则其共轭函数

也是这薛定谔方程的解答。

的实值部分或虚值部分,都分别是解答。

我们只需要专注实值的波函数解答。

这限制并不会影响到整个不含时问题。

转移焦点到含时薛定谔方程,两个复共轭的波,以相反方向移动。

给予某含时薛定谔方程的解答

其替代波函数是另外一个解答:

这解答是复共轭对称性的延伸。

称复共轭对称性为时间反转。

[编辑]幺正性

在量子力学里,对于任何事件,所有可能产生的结果的概率总和等于1,称这特性为幺正性。

薛定谔方程能够自动地维持幺正性。

用波函数表达,

(3)

为了满足这特性,必须将波函数归一化。

假若,某一个薛定谔方程的波函数

尚未归一化。

由于薛定谔方程为线性方程,

与任何常数的乘积还是这个薛定谔方程的波函数。

其中,

是归一常数,使得

这样,新波函数

还是这个薛定谔方程的解答,而且,

已经被归一化了。

在这里,特别注意到方程(3)的波函数

相依于时间,而随着位置的积分仍旧可能相依于时间。

在某个时间的归一化,并不保证随着时间的演化,波函数仍旧保持归一化。

薛定谔方程有一个特性:

它可以自动地保持波函数的归一化。

这样,量子系统永远地满足幺正性。

所以,薛定谔方程能够自动地维持幺正性。

总概率随时间的微分表达为

(4)

思考含时薛定谔方程,

其复共轭是

代入方程(4),

在无穷远的极限,符合物理实际的波函数必须等于0。

薛定谔方程的波函数的归一化不会随时间而改变。

[编辑]完备基底

能量本征函数形成了一个完备基底。

任何一个波函数可以表达为离散的能量本征函数的线性组合,或连续的能量本征函数的积分。

这就是数学的谱定理(spectraltheorem)。

在一个有限态空间,这表明了厄米算符的本征函数的完备性。

[编辑]相对论性薛定谔方程

相对论量子力学

薛定谔方程并没有将相对论效应纳入考虑范围内。

对于伽利略变换,薛定谔方程是个不变式;

可是对于洛伦兹变换,薛定谔方程的形式会改变。

为了要包含相对论效

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 职业教育 > 职高对口

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1