运算机操纵技术范立男实验指导书文档格式.docx
《运算机操纵技术范立男实验指导书文档格式.docx》由会员分享,可在线阅读,更多相关《运算机操纵技术范立男实验指导书文档格式.docx(13页珍藏版)》请在冰豆网上搜索。
一、把握A/D、D/A转换原理
二、熟悉8位A/D、D/A转换的方式。
二、实验类型
验证性
三、实验原理及说明
一、通过数据通道接口板完成8位D/A转换的实验,转换公式如下:
例如:
数字量=01010001K7=0,K6=1,K5=0,K4=1,K3=0,K2=0,K1=0,K0=1
模拟量
实验中,依照输入的数字量,D/A转换为模拟量,其结果经A/D搜集并显示在运算机上。
实验示用意见图1-1。
图1-1实验示用意
二、通过数据通道接口板完成8位A/D转换的实验,转换公式如下:
数字量=模拟量/
Vref。
其中N是A/D转换器的位数,Vref是基准电压。
N=8Vref=模拟量=则数字量=×
28=51(十进制)
实验中设置的模拟量由D/A转换取得,此模拟量经A/D转换为数字量,并显示在运算机上。
实验示用意见图1-2。
图1-2实验示用意
四、实验仪器
序号
名称
主要用途
1
SAC-CCT计算机控制技术教学实验系统
构成实验所需的硬件电路
2
PC机
输入参数,观察运行结果
五、实验内容和步骤
(一)
一、将图1-1所示模拟电路连接好,将输入端ui与数据通道接口板上的DA0连接,输出端uo与实验平台信号引出区的IN0孔连接。
(在实验1~4中涉及运放电路板及ui及uo均按此连线,再也不赘述)。
将拔掉短路子J一、J2。
二、启动运算机,运行“系统设置”菜单,选择串口。
(在实验1~4中同此,再也不赘述,如不选择,则设为默许值,选择COM1通信端口。
)
3、打开“运算机操纵技术”,打开“实验选择”菜单,选择“D/A数模转换”实验。
4、选择“参数设置”命令,设置采样周期,采样点数和设定电压。
五、选择“运行观测”命令,观看阶跃响应曲线,改变模拟电路参数后,在从头观看阶跃响应曲线的转变。
六、为了更好观看曲线,在“参数设置”命令中,设置“曲线放大”倍数,“运行观测”。
7、记录波形及数据(保留结果、打印图像)。
八、连接其他电路,重复步骤3、4、五、6。
(二)
一、将图1-2所示模拟电路连接好,输入端和输出端别离接DA0和IN0。
二、启动运算机,运行“”运算机操纵技术”,打开“实验选择”菜单,选择“A/D数模转换”实验。
3、选择“参数设置”命令,设置采样周期,采样点数和设定电压。
4、为了更好观看曲线,在“参数设置”命令中,设置“曲线放大”倍数,“运行观测”。
五、记录波形及数据(保留结果、打印图像)。
六、实验数据处置与分析
一、画出数字量与模拟量的对应曲线。
二、计算出理论值,将其与实验结果比较,分析产生误差的缘故。
七、预习与试探题
一、A/D转换、D/A转换的大体原理。
二、数字量转换成模拟量,模拟量转换成数字量的公式。
实验二数字PID操纵
一、实验目的与要求
一、研究PID操纵器的参数对系统稳固性及过渡进程的阻碍。
二、研究采样周期T对系统特性的阻碍。
3、研究Ⅰ型系统及Ⅱ型系统的稳态误差。
一、系统结构图示于图2-1。
图2-1
图中
二、开环系统(被控对象)的模拟电路图别离示于图2-2和图2-3,其中图2-2对应
,图2-3对应
3、被控对象
为“0型”系统,采纳PI操纵或PID操纵,可使系统变成“Ⅰ型”系统,被控对象
为“Ⅰ型”系统,采纳PI操纵或PID操纵,可使系统变成“Ⅱ型”系统。
图2-2
图2-3
4、当r(t)=1(t)时研究其过渡进程。
五、PI调剂及PID调剂器的增益。
式中
不难看出PI调剂器的增益
,因此在改变Ki时,同时改变了闭环增益K,若是不想改变K,则应相应改变Kp,采纳PID调剂器相同。
6、PID递推算法:
若是PID调剂器输入信号为e(t),其输出信号为u(t),则离散的递推算法如下:
其中
是误差积存和。
一、连接运放电路板的电源线(±
12V,GND),并将图2-2所示的模拟电路连接好,输入端和输出端别离接DA0、IN0。
二、启动运算机,运行“”运算机操纵技术”,打开“实验选择”菜单,选择“数字PID操纵”实验。
3、在命令菜单当选择“参数设置”,进入参数显示窗口,设置采样周期(单位为ms),采样点数,输出电压及Kp,Ki,Kd各参数。
4、选择“运行观测”命令,观看响应波形。
五、改变参数Kp,Ki,Kd的值,重复步骤4。
六、取中意的Kp,Ki,Kd,观看稳态误差。
7、连接图2-3所示模拟电路,重复上述步骤。
八、记录波形及数据。
(保留结果,打印图像)
九、实验终止,单击“退出实验”
一、画出实验的模拟电路图。
二、当被控对象为
时,取过渡进程为最中意时的Kp,Ki,Kd,画出校正后的波特图,查出相位稳固裕量γ和穿越频率ωc。
3、总结一种有效选择Kp,Ki,Kd的方式,以最快的速度取得中意的参数。
一、PID操纵器中P、I、D三个环节的作用是什么?
二、PID的参数整定方式。
八、PID算法流程图
(eK为误差,eK1为上一次误差,eK2为误差的积存和,uK是操纵量)
实验三大林算法
一、把握大林算法的特点及适用范围。
二、了解大林算法中时刻常数T对系统的阻碍。
一、被控实验对象的组成
(1)惯性环节的模拟电路及传递函数:
其中
图3
(2)纯延时环节的组成与传递函数
T为采样周期,N为正整数的纯延时个数。
由于纯延时环节不易用电路实现,在软件中由运算机实现。
(3)被控对象的开环传递函数为:
二、大林算法的闭环传递函数:
为大林时刻常数
3、大林算法的数字操纵器:
设
大林时刻常数K=2
一、将模拟电路在运放电路板上连接好。
二、启动运算机,运行“运算机操纵技术”,打开“实验选择”菜单,选择“大林算法”实验。
3、在命令菜单上选择“参数设置”命令,进入参数设置窗口,设置采样周期、采样点数,输出电压和大林时刻常数。
一、分析开环系统的阶跃响应曲线。
二、画出闭环的阶跃响应曲线,并求出超调量和响应时刻。
3、分析大林时刻常数对系统稳固性的阻碍。
一、大林算法适合于什么类型的被控对象?
二、大林算法的闭环传递函数是什么?
3、大林算法的数字操纵器的设计步骤。
八、大林算法软件流程图
(eK为误差,eK1为上一次误差,uK是操纵量,uK1是上一次的操纵量)
(uKn1是上N+1次的操纵量)
实验四炉温操纵实验
一、了解炉温操纵系统的特点。
3、研究大时刻常数系统PID操纵器参数的整定方式。
综合性
图4-1
一、系统结构表示于图4-1。
图中
二、系统的大体工作原理
系统由两大部份组成,第一部份由运算机、数据通道接口板和微机实验平台组成,完成温度信号搜集、PID运算、产生操纵双向可控硅的触发信号;
第二部份为炉温操纵实验板,完成温度操纵及传感器信号放大,第二部份电路原理图见图4-2。
在炉温操纵实验板上,温度检测元件采纳热敏电阻Rt,其阻值转变由双臂电桥变换成电压信号,经放大电路为0~5V信号,送A/D转换器(ADC0809)转化为数字信号。
系统采纳双向可控硅应用过零触发方式,在每一个操纵周期(与采样周期相等),操纵输入电阻丝的正弦波个数,即通过操纵输入电阻丝平均功率的大小来达到操纵温度的目的,图中,AC15V电源由实验平台从它与炉温操纵实验板的连接插脚Rt、R1处提供。
图4-2
PID递推算法
一、连接炉温操纵板的电源线(±
12V,GND,+5V),将Rt,R1连至炉体相应插口,将Vo与IN0,CK与相连。
二、运行“运算机操纵技术”,打开“实验选择”菜单,选择“炉温操纵”实验。
3、在命令菜单上选择“参数设置”命令,进入参数设置窗口,设置采样周期及Kp,Ki,Kd各参数。
4、选择“运行观测”命令,由运算机完成温度采样运算机和输出操纵信号并在波形显示窗口显示系统响应曲线,同时以红色数字将即时温度显示在屏幕上。
五、改变参数Kp,Ki,Kd重复步骤4,观看不同参数时的响应曲线及稳态误差。
六、取中意的Kp,Ki,Kd,并记录实验结果。
注:
若运行观测时的初始温度与环境温度不符,应予以调剂,方式如下:
断开CK与连线,选择“运行观测”命令,调剂R0,直至屏幕显示的即时温度达到环境温度为止,按ESC停止,连接CK与连线,建议不要随意调剂R0。
一、记录过渡进程为最中意时的,并画出其响应曲线。
2、分析此情形下的超调量,响应时刻及稳态误差。
3、总结一种温度操纵系统有效的选择Kp,Ki,Kd的方式,以最快的速度取得中意的参数。
七、温度操纵软件流程图
(eK为误差,eK1为上一次误差,eK2为误差积存和,uK是操纵量)
(可控硅导通时刻a=0~T,a=T导通时刻最大,a=0导通时刻为零)