基于单片机实现的温度采集显示系统Word格式.docx

上传人:b****3 文档编号:15898188 上传时间:2022-11-16 格式:DOCX 页数:16 大小:68.44KB
下载 相关 举报
基于单片机实现的温度采集显示系统Word格式.docx_第1页
第1页 / 共16页
基于单片机实现的温度采集显示系统Word格式.docx_第2页
第2页 / 共16页
基于单片机实现的温度采集显示系统Word格式.docx_第3页
第3页 / 共16页
基于单片机实现的温度采集显示系统Word格式.docx_第4页
第4页 / 共16页
基于单片机实现的温度采集显示系统Word格式.docx_第5页
第5页 / 共16页
点击查看更多>>
下载资源
资源描述

基于单片机实现的温度采集显示系统Word格式.docx

《基于单片机实现的温度采集显示系统Word格式.docx》由会员分享,可在线阅读,更多相关《基于单片机实现的温度采集显示系统Word格式.docx(16页珍藏版)》请在冰豆网上搜索。

基于单片机实现的温度采集显示系统Word格式.docx

三、核心元件的功能

1、AT89C51

AT89S51美国ATMEL公司生产的低功耗,高性能CMOS8位单片机,片内含4KBytesISP(In-systemprogrammable)的可反复擦写1000次的Flash只读程序存储器,器件采用ATMEL公司的高密度、非易失性存储技术制造,兼容标准MCS-51指令系统及AT89C51引脚结构,芯片内集成了通用8位中央处理器和ISPFlash存储单元。

单片机AT89S51强大的功能可为许多嵌入式控制应用系统提供高性价比的解决方案。

AT89C51芯片的引脚结构如图1所示:

1.1功能特性概括:

AT89S51提供以下标准功能:

40个引脚、4KBytesFlash片内程序存储器、128Bytes的随机存取数据存储器(RAM)、32个外部双向输入/输出(I/O)口、5个中断优先级2层中断嵌套中断、2个数据指针、2个16位可编图1程定时/计数器、2个全双工串行通信口、看门狗(WDT)电路、片内振荡器及时钟电路。

此外,AT89S51可降至0Hz的静态逻辑操作,并支持两种软件可选的节电工作模式,空闲模式,CPU暂停工作,而RAM、定时/计数器、串行通信口、外中断系统可继续工作。

掉电模式冻结振荡器而保存RAM的数据,停止芯片其它功能直至外中断激活或硬件复位。

同时该芯片还具有PDIP、TQFP和PLCC等三种封装形式,以适应不同产品的需求

1.2管脚说明:

P0口:

P0口为一个8位漏级开路双向I/O口,也即地址/数据总线复用口。

作为输出口用时,能驱动8个TTL逻辑门电路。

对端口写“1”时,被定义为高阻输入。

在访问外部数据存储器或程序存储器时,这组口线分时转换地址(低8位)和数据总线复用,在访问期间激活内部上拉电阻。

在Flash编程时,P0口接收指令字节,而在程序校验时,输出指令字节,校验时,要求外接上拉电阻。

P1口:

P1口是一个带内部上拉电阻的8位双向I/O口,P1口的输出缓冲级可驱动(吸收或输出电流)4个TTL逻辑门电路。

对端口写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口。

作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电流(I

)。

在Flash编程和程序校验期间,P1接收低8位地址。

部分端口还有第二功能,如表1所示:

端口引脚

第二功能

P1.5

MOSI(用于ISP编程)

P1.6

MISO(用于ISP编程)

P1.7

SCK(用于ISP编程)

表1P1口部分引脚第二功能

P2口:

P2口是一个带有内部上拉电阻的8位双向I/O口,P2口的输出缓冲级可驱动(吸收或输出电流)4个TTL逻辑门电路。

在访问外部程序存储器或16位地址的外部数据存储器(例如执行MOVX@DPTR指令)时,P2口送出高8位地址数据。

在访问8位地址的外部数据寄存器(例如执行MOVX@Ri指令)时,P2口线上的内容(也即特殊功能寄存器(SFR)区中P2寄存器的内容),在整个访问期间不改变。

在Flash编程或校验时,P2亦接收高位地址和其它控制信号。

P3口:

P3口是一个带有内部上拉电阻的双向8位I/O口,P3口的输出缓冲级可驱动(吸收或输出电流)4个TTL逻辑门电路。

对P3口写“1”时,它们被内部的上拉电阻拉高并可作为输入端口。

作输入口使用时,被外部信号拉低的P3口将用上拉电阻输出电流(I

P3口除了作为一般的I/O口线外,更重要的用途是它的第二功能,如表2所示:

P3口还接收一些用于Flash闪速存储器编程和程序校验的控制信号。

端口引脚

第二功能

P3.0

RXD(串行输入口)

P3.1

TXD(串行输出口)

P3.2

(外中断0)

P3.3

(外中断1)

P3.4

T0(定时/计数器0)

P3.5

T1(定时/计数器1)

P3.6

(外部数据存储器写选通)

P3.7

(外部数据存储器读选通)

表2P3口引脚第二功能

RST:

复位输入。

当振荡器工作时,RST引脚出现两个机器周期以上的高电平时间将使单片机复位。

WDT溢出将使该引脚输出高电平,设置SFRAUXR的DISRTO位(地址8EH)可打开或关闭该功能。

DISRTO位缺省为RESET输出高电平打开状态。

ALE/:

当访问外部存储器或数据存储器时,ALE(地址锁存允许)输出脉冲用于锁存地址的低8位字节。

即使不访问外部寄存器,ALE仍以时钟振荡频率的1/6输出固定的正脉冲信号,因此它可对外输出时钟或用于定时目的。

值得注意的是:

每当访问外部数据存储器时将跳过一个ALE脉冲。

对Flash存储器编程期间,该引脚还用于输入编程脉冲(PROG)。

如有必要,可通过对特殊功能寄存器(SFR)区中的8EH单元的D0位置位,可禁止ALE操作。

该位置位后,只要一条MOVX和MOVC指令才会激活ALE。

此外,该引脚会被微弱拉高,单片机执行外部程序时,应设置ALE无效。

程序存储允许(

)输出是外部程序存储器的读选通信号,当AT89S51由外部程序存储器取指令(或数据)时,每个机器周期两次

有效,即输出两个脉冲。

当访问外部数据存储器时,没有两次有效的

信号。

EA/VPP:

外部访问允许。

欲使CPU仅访问外部程序存储器(地址为0000H-FFFFH),EA端必须保持低电平(接地)。

需要注意的是:

如果加密位LB1被编程,复位时内部会锁存EA端状态。

如EA端保持高电平(接VCC端),CPU则执行内部程序存储器中的指令。

Flash存储器编程期间,该引脚用于施加+12V编程电压(VPP)。

XTAL1:

反向振荡放大器的输入及内部时钟工作电路的输入端。

XTAL2:

反向振荡放大器器的输出端。

2、DS18B20

美国Dallas半导体公司的数字化温度传感器DS1820是世界上第一片支持"

一线总线"

接口的温度传感器,在其内部使用了在板(ON-B0ARD)专利技术。

全部传感元件及转换电路集成在形如一只三极管的集成电路内。

一线总线独特而且经济的特点,使用户可轻松地组建传感器网络,为测量系统的构建引入全新概念。

现在,新一代的DS18B20体积更小、更经济、更灵活。

使你可以充分发挥“一线总线”的优点。

新的"

一线器件"

DS18B20体积更小、适用电压更宽、更经济。

DS18B20可以程序设定9~12位的分辨率,精度为±

0.5°

C。

可选更小的封装方式,更宽的电压适用范围。

分辨率设定,及用户设定的报警温度存储在EEPROM中,掉电后依然保存。

DS18B20的性能是新一代产品中最好的!

性能价格比也非常出色!

继"

的早期产品后,DS1820开辟了温度传感器技术的新概念。

DS18B20使电压、特性及封装有更多的选择,让我们可以构建适合自己的经济的测温系统。

DS18B20也支持"

接口,测量温度范围为-55°

C~+125°

C,在-10~+85°

C范围内,精度为±

现场温度直接以"

的数字方式传输,大大提高了系统的抗干扰性。

适合于恶劣环境的现场温度测量,如:

环境控制、设备或过程控制、测温类消费电子产品等。

与前一代产品不同,新的产品支持3.0V~5.5V的电压范围,使系统设计更灵活、方便。

而且新一代产品更便宜,体积更小。

2.1DS18B20的主要特性

(1)适应电压范围更宽,电压范围:

3.0~5.5V,在寄生电源方式下可由数据线供电

(2)独特的单线接口方式,DS18B20在与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯

(3)DS18B20支持多点组网功能,多个DS18B20可以并联在唯一的三线上,实现组网多点测温

(4)DS18B20在使用中不需要任何外围元件,全部传感元件及转换电路集成在形如一只三极管的集成电路内

(5)温范围-55℃~+125℃,在-10~+85℃时精度为±

0.5℃

(6)可编程的分辨率为9~12位,对应的可分辨温度分别为0.5℃、0.25℃、0.125℃和0.0625℃,可实现高精度测温

  (7)在9位分辨率时最多在93.75ms内把温度转换为数字,12位分辨率时最多在750ms内把温度值转换为数字,速度更快

  (8)测量结果直接输出数字温度信号,以"

串行传送给CPU,同时可传送CRC校验码,具有极强的抗干扰纠错能力

  (9)负压特性:

电源极性接反时,芯片不会因发热而烧毁,但不能正常工作。

2.2DS18B20的内部结构

DS18B20内部结构主要由四部分组成:

64位光刻ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。

DS18B20引脚定义:

(1)GND为电源地;

(2)DQ为数字信号输入/输出端;

(3)VDD为外接供电电源输入端(在寄生电源接线方式时接地)

2.3DS18B20工作原理

DS18B20的读写时序和测温原理与DS1820相同,只是得到的温度值的位数因分辨率不同而不同,且温度转换时的延时时间由2s减为750ms。

DS18B20测温原理如图3所示。

图中低温度系数晶振的振荡频率受温度影响很小,用于产生固定频率的脉冲信号送给计数器1。

高温度系数晶振随温度变化其振荡率明显改变,所产生的信号作为计数器2的脉冲输入。

计数器1和温度寄存器被预置在-55℃所对应的一个基数值。

计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当计数器1的预置值减到0时,温度寄存器的值将加1,计数器1的预置将重新被装入,计数器1重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到计数器2计数到0时,停止温度寄存器值的累加,此时温度寄存器中的数值即为所测温度。

图3中的斜率累加器用于补偿和修正测温过程中的非线性,其输出用于修正计数器1的预置值。

2.4DS1820使用中注意事项

DS1820虽然具有测温系统简单、测温精度高、连接方便、占用口线少等优点,但在实际应用中也应注意以下几方面的问题:

1)较小的硬件开销需要相对复杂的软件进行补偿,由于DS1820与微处理器间采用串行数据传送,因此,在对DS1820进行读写编程时,必须严格的保证读写时序,否则将无法读取测温结果。

在使用PL/M、C等高级语言进行系统程序设计时,对DS1820操作部分最好采用汇编语言实现。

2)在DS1820的有关资料中均未提及单总线上所挂DS1820数量问题,容易使人误认为可以挂任意多个DS1820,在实际应用中并非如此。

当单总线上所挂DS1820超过8个时,就需要解决微处理器的总线驱动问题,这一点在进行多点测温系统设计时要

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高中教育 > 理化生

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1