公务员常用数学公式汇总文档格式.docx
《公务员常用数学公式汇总文档格式.docx》由会员分享,可在线阅读,更多相关《公务员常用数学公式汇总文档格式.docx(7页珍藏版)》请在冰豆网上搜索。
am+an=ak+ai;
(其中:
n为项数,a1为首项,an为末项,d为公差,sn为等差数列前n项的和)
5.等比数列:
(1)an=a1q-1;
(2)sn=(q1)
(3)若a,G,b成等比数列,则:
G2=ab;
(4)若m+n=k+i,则:
am·
an=ak·
ai;
(5)am-an=(m-n)d
(6)=q(m-n)
n为项数,a1为首项,an为末项,q为公比,sn为等比数列前n项的和)
6.一元二次方程求根公式:
ax2+bx+c=a(x-x1)(x-x2)
其中:
x1=;
x2=(b2-4ac0)
根与系数的关系:
x1+x2=-,x1·
x2=
二、基础几何公式
1.三角形:
不在同一直线上的三点可以构成一个三角形;
三角形内角和等于180°
;
三角形中任两
边之和大于第三边、任两边之差小于第三边;
(1)角平分线:
三角形一个的角的平分线和这个角的对边相交,这个角的顶点和交点之间的线段,叫做三角形的角的平分线。
(2)三角形的中线:
连结三角形一个顶点和它对边中点的线段叫做三角形的中线。
(3)三角形的高:
三角形一个顶点到它的对边所在直线的垂线段,叫做三角形的高。
(4)三角形的中位线:
连结三角形两边中点的线段,叫做三角形的中位线。
(5)内心:
角平分线的交点叫做内心;
内心到三角形三边的距离相等。
重心:
中线的交点叫做重心;
重心到每边中点的距离等于这边中线的三分之一。
垂线:
高线的交点叫做垂线;
三角形的一个顶点与垂心连线必垂直于对边。
外心:
三角形三边的垂直平分线的交点,叫做三角形的外心。
外心到三角形的三个顶点的距离相等。
直角三角形:
有一个角为90度的三角形,就是直角三角形。
直角三角形的性质:
(1)直角三角形两个锐角互余;
(2)直角三角形斜边上的中线等于斜边的一半;
(3)直角三角形中,如果有一个锐角等于30°
,那么它所对的直角边等于斜边的一半;
(4)直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角是30°
(5)直角三角形中,c2=a2+b2(其中:
a、b为两直角边长,c为斜边长);
(6)直角三角形的外接圆半径,同时也是斜边上的中线;
直角三角形的判定:
(1)有一个角为90°
(2)边上的中线等于这条边长的一半;
(3)若c2=a2+b2,则以a、b、c为边的三角形是直角三角形;
2.面积公式:
正方形=边长×
边长;
长方形=长×
宽;
三角形=×
底×
高;
梯形=;
圆形=R2
平行四边形=底×
高
扇形=R2
正方体=6×
边长×
边长
长方体=2×
(长×
宽+宽×
高+长×
高);
圆柱体=2πr2+2πrh;
球的表面积=4R2
3.体积公式
正方体=边长×
长方体=长×
宽×
圆柱体=底面积×
高=Sh=πr2h
圆锥=πr2h
球=
4.与圆有关的公式
设圆的半径为r,点到圆心的距离为d,则有:
(1)d﹤r:
点在圆内(即圆的内部是到圆心的距离小于半径的点的集合);
(2)d=r:
点在圆上(即圆上部分是到圆心的距离等于半径的点的集合);
(3)d﹥r:
点在圆外(即圆的外部是到圆心的距离大于半径的点的集合);
线与圆的位置关系的性质和判定:
如果⊙O的半径为r,圆心O到直线的距离为d,那么:
(1)直线与⊙O相交:
d﹤r;
(2)直线与⊙O相切:
d=r;
(3)直线与⊙O相离:
d﹥r;
圆与圆的位置关系的性质和判定:
设两圆半径分别为R和r,圆心距为d,那么:
(1)两圆外离:
;
(2)两圆外切:
(3)两圆相交:
();
(4)两圆内切:
(5)两圆内含:
().
圆周长公式:
C=2πR=πd(其中R为圆半径,d为圆直径,π≈3.1415926≈);
的圆心角所对的弧长的计算公式:
=;
扇形的面积:
(1)S扇=πR2;
(2)S扇=R;
若圆锥的底面半径为r,母线长为l,则它的侧面积:
S侧=πr;
圆锥的体积:
V=Sh=πr2h。
三、其他常用知识
1.2X、3X、7X、8X的尾数都是以4为周期进行变化的;
4X、9X的尾数都是以2为周期进行变化的;
另外5X和6X的尾数恒为5和6,其中x属于自然数。
2.对任意两数a、b,如果a-b>0,则a>b;
如果a-b<0,则a<b;
如果a-b=0,则a=b。
当a、b为任意两正数时,如果a/b>1,则a>b;
如果a/b<1,则a<b;
如果a/b=1,则a=b。
当a、b为任意两负数时,如果a/b>1,则a<b;
如果a/b<1,则a>b;
对任意两数a、b,当很难直接用作差法或者作商法比较大小时,我们通常选取中间值C,如果
a>C,且C>b,则我们说a>b。
3.工程问题:
工作量=工作效率×
工作时间;
工作效率=工作量÷
工作时间=工作量÷
工作效率;
总工作量=各分工作量之和;
注:
在解决实际问题时,常设总工作量为1。
4.方阵问题:
(1)实心方阵:
方阵总人数=(最外层每边人数)2
最外层人数=(最外层每边人数-1)×
4
(2)空心方阵:
中空方阵的人数=(最外层每边人数)2-(最外层每边人数-2×
层数)2
=(最外层每边人数-层数)×
层数×
4=中空方阵的人数。
例:
有一个3层的中空方阵,最外层有10人,问全阵有多少人?
解:
(10-3)×
3×
4=84(人)
5.利润问题:
(1)利润=销售价(卖出价)-成本;
利润率===-1;
销售价=成本×
(1+利润率);
成本=。
(2)单利问题
利息=本金×
利率×
时期;
本利和=本金+利息=本金×
(1+利率×
时期);
本金=本利和÷
时期)。
年利率÷
12=月利率;
月利率×
12=年利率。
某人存款2400元,存期3年,月利率为10.2‰(即月利1分零2毫),三年到期后,本利和共是多少元?
”
用月利率求。
3年=12月×
3=36个月
2400×
(1+10.2%×
36)=2400×
1.3672=3281.28(元)
6.排列数公式:
P=n(n-1)(n-2)…(n-m+1),(m≤n)
组合数公式:
C=P÷
P=(规定=1)。
“装错信封”问题:
D1=0,D2=1,D3=2,D4=9,D5=44,D6=265,
7.年龄问题:
关键是年龄差不变;
几年后年龄=大小年龄差÷
倍数差-小年龄
几年前年龄=小年龄-大小年龄差÷
倍数差
8.日期问题:
闰年是366天,平年是365天,其中:
1、3、5、7、8、10、12月都是31天,4、6、9、11是30天,闰年时候2月份29天,平年2月份是28天。
9.植树问题
(1)线形植树:
棵数=总长间隔+1
(2)环形植树:
棵数=总长间隔
(3)楼间植树:
棵数=总长间隔-1
(4)剪绳问题:
对折N次,从中剪M刀,则被剪成了(2N×
M+1)段
10.鸡兔同笼问题:
鸡数=(兔脚数×
总头数-总脚数)÷
(兔脚数-鸡脚数)
(一般将“每”量视为“脚数”)
得失问题(鸡兔同笼问题的推广):
不合格品数=(1只合格品得分数×
产品总数-实得总分数)÷
(每只合格品得分数+每只不合格品扣分数)
=总产品数-(每只不合格品扣分数×
总产品数+实得总分数)÷
“灯泡厂生产灯泡的工人,按得分的多少给工资。
每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。
某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?
解:
(4×
1000-3525)÷
(4+15)=475÷
19=25(个)
11.盈亏问题:
(1)一次盈,一次亏:
(盈+亏)÷
(两次每人分配数的差)=人数
(2)两次都有盈:
(大盈-小盈)÷
(3)两次都是亏:
(大亏-小亏)÷
(4)一次亏,一次刚好:
亏÷
(5)一次盈,一次刚好:
盈÷
“小朋友分桃子,每人10个少9个,每人8个多7个。
问:
有多少个小朋友和多少个桃子?
”
解(7+9)÷
(10-8)=16÷
2=8(个)………………人数
10×
8-9=80-9=71(个)………………桃子
12.行程问题:
(1)平均速度:
平均速度=
(2)相遇追及:
相遇(背离):
路程÷
速度和=时间
追及:
速度差=时间
(3)流水行船:
顺水速度=船速+水速;
逆水速度=船速-水速。
两船相向航行时,甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度
两船同向航行时,后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度。
(4)火车过桥:
列车完全在桥上的时间=(桥长-车长)÷
列车速度
列车从开始上桥到完全下桥所用的时间=(桥长+车长)÷
(5)多次相遇:
相向而行,第一次相遇距离甲地a千米,第二次相遇距离乙地b千米,则甲乙两地相距
S=3a-b(千米)
(6)钟表问题:
钟面上按“分针”分为60小格,时针的转速是分针的,分针每小时可追及
时针与分针一昼夜重合22次,垂直44次,成180o22次。