基于AT89C51单片机超声波测距仪设计文档格式.docx

上传人:b****4 文档编号:15874096 上传时间:2022-11-16 格式:DOCX 页数:28 大小:1.66MB
下载 相关 举报
基于AT89C51单片机超声波测距仪设计文档格式.docx_第1页
第1页 / 共28页
基于AT89C51单片机超声波测距仪设计文档格式.docx_第2页
第2页 / 共28页
基于AT89C51单片机超声波测距仪设计文档格式.docx_第3页
第3页 / 共28页
基于AT89C51单片机超声波测距仪设计文档格式.docx_第4页
第4页 / 共28页
基于AT89C51单片机超声波测距仪设计文档格式.docx_第5页
第5页 / 共28页
点击查看更多>>
下载资源
资源描述

基于AT89C51单片机超声波测距仪设计文档格式.docx

《基于AT89C51单片机超声波测距仪设计文档格式.docx》由会员分享,可在线阅读,更多相关《基于AT89C51单片机超声波测距仪设计文档格式.docx(28页珍藏版)》请在冰豆网上搜索。

基于AT89C51单片机超声波测距仪设计文档格式.docx

1.1课题研究背景及意义

随着社会的发展,人们对于距离的敏感度越来越高,生活上对距离的感知也越来越敏感,因此测距仪也受到了极大的欢迎。

它主要有三类,一类是激光测距仪,是根据光电元件接收目标反射的激光束来计算出测距者到目标的距离。

另一类是红外测距仪,利用红外线传播不扩散的原理进行测距,但方向性差。

还有一类是超声波测距仪,但也有局限性,传播需要介质,超声波发射器向某一方向发射超声波,在发射的同时开始计时,碰到障碍物后就立即返回来,超声波接收器收到反射波就立即停止计时。

超声波测距是一种非接触可直接检测技术,它对光线和被测对象的颜色等没有要求,与其它仪器相比更卫生,更耐高温、等恶劣环境,具有少维护、可靠性高、寿命长等优点。

利用超声波检测往往比较快捷、性能稳定、能够实现实时检测等优点,所以它广泛的应用在全自动机器人,汽车倒车雷达等研制方面。

二、总体设计方案及论证

2.1总体方案设计

本设计主要包括了硬件和软件设计两部分。

按模块可划分为数据采集、按键控制、数码管显示、蜂鸣器报警四个子模块。

电路结构可划分为:

超声波传感器、蜂鸣器、单片机控制电路。

就此设计的核心模块来说,单片机就是设计的中心单元,所以此系统也是单片机应用系统的一种应用。

单片机应用系统也是有硬件和软件组成。

硬件包括单片机、输入/输出设备、以及外围应用电路等组成的系统,软件是各种工作程序的总称。

单片机应用系统的研制过程包括总体设计、硬件设计、软件设计等几个阶段。

系统采用STC89C51单片机作为核心控制单元,当测得的距离小于设定距离时,主控芯片将测得的数值与设定值进行比较处理。

然后控制蜂鸣器报警。

系统总体的设计方框图如图1所示。

电源

超声波传感器模块

ATC89C51主控制器模块

按键控制

4位数码管显示模块

蜂鸣器报警模块

图1系统方框图

三、硬件实现及单元电路设计

3.1主控制模块

主控制最小系统电路如图2所示。

图2最小系统

硬件电路总设计见图3,从以上的分析可知在本设计中要用到如下器件:

STC89C51、超声波传感器、按键、四位数码管、蜂鸣器等一些单片机外围应用电路。

其中D1为电源工作指示灯。

电路中用到3个按键,一个是设定键,一个加键,一个减键。

图3总设计电路图

3.2电源设计

电源部分的设计采用3节5号干电池4.5V供电。

3.3超声波测试模块

超声波模块采用现成的HC-SR04超声波模块,该模块可提供2cm-400cm的非接触式距离感测功能,测距精度可达高到3mm。

模块包括超声波发射器、接收器与控制电路。

基本工作原理:

采用IO口TRIG触发测距,给至少10us的高电平信号;

模块自动发送8个40khz的方波,自动检测是否有信号返回;

有信号返回,通过IO口ECHO输出一个高电平,高电平持续的时间就是超声波从发射到返回的时间。

测试距离=(高电平时间*声速(340M/S))/2。

实物如下图4。

其中VCC供5V电源,GND为地线,TRIG触发控制信号输入,ECHO回响信号输出等四支线。

图4超声波模块实物图

超声波探测模块HC-SR04的使用方法如下:

IO口触发,给Trig口至少10us的高电平,启动测量;

模块自动发送8个40Khz的方波并随时检测是否有信号返回,有信号返回,通过Echo输出一个高电平,高电平持续的时间就是超声波从发射到返回的时间,测试距离=(高电平时间*340)/2,单位为m。

程序中测试功能主要由两个函数完成。

实现中采用定时器0进行定时测量,8分频,TCNTT0预设值0XCE,当timer0溢出中断发生2500次时为125ms,计算公式为(单位:

ms):

T=(定时器0溢出次数*(0XFF-0XCE))/1000

其中定时器0初值计算依据分频不同而有差异。

3.4超声波传感器原理

市面上常见的超声波传感器多为开放型,其内部结构如图5所示,一个复合式振动器被灵活地固定在底座上。

该复合式振动器是由谐振器以及一个金属片和一个压电陶瓷片组成的双压电晶片元件振动器。

谐振器呈喇叭形,目的是能有效地辐射由于振动而产生的超声波,并且可以有效地使超声波聚集在振动器的中央部位。

当电压作用于压电陶瓷时,就会随电压和频率的变化产生机械变形。

另一方面,当振动压电陶瓷时,则会产生一个电荷。

利用这一原理,当给由两片压电陶瓷或一片压电陶瓷和一个金属片构成的振动器,所谓叫双压电晶片元件,施加一个电信号时,就会因弯曲振动发射出超声波。

相反,当向双压电晶片元件施加超声振动时,就会产生一个电信号。

基于以上作用,便可以将压电陶瓷用作超声波传感器。

图5超声波内部结构

超声波是一种在弹性介质中的机械振荡,其频率超过20KHz,分横向振荡和纵向振荡两种,超声波可以在气体、液体及固体中传播,其传播速度不同。

它有折射和反射现象,且在传播过程中有衰减。

3.5测距分析

超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。

超声波在空气中的传播速度为340m/s,根据计时器记录的时间t,就可以计算出发射点距障碍物的距离(s),即:

s=340t/2

最常用的超声测距的方法是回声探测法,超声波发射器向某一方向发射超声波,在发射时刻的同时计数器开始计时,碰到障碍物的阻挡就立即反射回来,超声波接收器收到反射回的超声波就立即停止计时并计算出距离。

以超声波在空气中的传播速度为340m/s计算,根据定时器算出的时间t,就可以计算出发射点距障碍物面的距离s,即:

s=340t/2。

由于超声波也是一种声波,其声速V与温度有关。

在使用时,如果传播介质温度变化不大,则可近似认为超声波速度在传播的过程中是基本不变的。

如果对测距精度要求很高,则应通过温度补偿的方法对测量结果加以数值校正。

声速确定后,只要测得超声波往返的时间,即可求得距离。

这就是超声波测距的基本原理。

如图6所示:

超声波发射障碍物

S

H

θ

超声波接收

图6超声波的测距原理

(3-1)

(3-2)

式中:

L---两探头之间中心距离的一半.

又知道超声波传播的距离为:

(3-3)

v—超声波在介质中的传播速度;

t—超声波从发射到接收所需要的时间.

将(3—2)、(3—3)代入(3-1)中得:

(3-4)

其中,超声波的传播速度v在一定的温度下是一个常数(例如在温度T=30度时,V=349m/s);

当需要测量的距离H远远大于L时,则(3—4)变为:

(3-5)

所以,只要需要测量出超声波传播的时间t,就可以得出测量的距离H.

3.6时钟电路的设计

AT89C51虽然有内部振荡电路,但要形成时钟,必须外部附加电路。

AT89C51单片机的时钟产生方法有两种。

内部时钟方式和外部时钟方式。

本设计采用内部时钟方式,利用芯片内部的振荡电路,在XTAL1、XTAL2引脚上外接定时元件,内部的振荡电路便产生自激振荡。

本设计采用最常用的内部时钟方式,即用外接晶体和电容组成的并联谐振回路。

振荡晶体可在1.2MHZ到12MHZ之间选择。

电容值无严格要求,但电容取值对振荡频率输出的稳定性、大小、振荡电路起振速度

有少许影响,CX1、CX2可在20pF到100pF之间取值,但在60pF到70pF时振荡器有较高的频率稳定性。

所以本设计中,振荡晶体选择12MHZ,电容选择20pF。

因为一个机器周期含有6个状态周期,而每个状态周期为2个振荡周期,所以一个机器周期共有12个振荡周期,如果外接石英晶体振荡器的振荡频率为12MHZ,一个振荡周期为1/12us,故而一个机器周期为1us。

如图7所示为时钟电路。

图7时钟电路图

3.7复位电路的设计

复位方法有上电自动复位和手动复位两种,单片机在时钟电路工作以后,在RESET端持续给出2个机器周期的高电平时就可以完成复位操作。

例如使用晶振频率为12MHz时,则复位信号持续时间应不小于2us。

本设计采用的是自动复位电路。

如图

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 医药卫生 > 基础医学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1