最新苏教版小学六年级数学下册第六单元教案Word格式.docx
《最新苏教版小学六年级数学下册第六单元教案Word格式.docx》由会员分享,可在线阅读,更多相关《最新苏教版小学六年级数学下册第六单元教案Word格式.docx(14页珍藏版)》请在冰豆网上搜索。
3.进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的能力。
【备学提纲】
自学教材第56-57页的例1
1、你能尝试解释说明什么是正比例么?
2、一只铅笔0.4元,铅笔的总价和数量成正比例关系么?
为什么?
3、生活中还有哪些成正比例的量?
你能举例说一说么?
【活动方案】
活动一:
学习例1
1、说一说表中列出了哪两种量。
2、说一说这两种量的数值分别是怎样变化的。
可先让同桌相互说一说,再组织全班交流。
3、找一找这两种量的变化的规律,从“变化”中去寻找“不变”。
写出几组相对应的路程与时间的比,并求出比值。
4、:
这个比值表示什么?
上面的规律能不能用一个式子来表示?
路程÷
时间=速度(一定)
活动二:
练习“试一试”
1.根据表中的已知条件先把表格填写完整。
2.根据表中的数据,依次讨论表格下面的四个问题,并仿照例1作适当的板书。
3.根据板书完整地说一说铅笔的总价和数量成什么关系。
活动三:
抽象表达正比例的意义
1.观察上面的两个例子,说说它们有什么共同点。
2.启发学生思考:
如果用字母y和
x分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用怎样的式子来表示?
【检测反馈】
1.完成第63页的“练一练”
独立思考并作出判断,再要求说明判断理由。
2.练习十三第1~3题。
第1题:
先各自算一算、想一想,再讨论和交流。
第2题:
独立进行判断,再指名说判断的理由。
第3题:
说说题目要求我们把已知的正方形按怎样的比放大,放大后正方形的边长各是几厘米,再画一画。
填好表格后,组织学生讨论,明确:
只有当两种相关联的量的比值一定时,它们才能成正比例。
思考题:
一、教学例1
1.谈话引出例1的表格,让学生说一说表中列出了哪两种量。
2.引导学生观察表中的数据,说一说这两种量的数值分别是怎样变化的。
通过交流,使学生初步感知两种量的变化情况:
行驶的时间扩大,路程也随着扩大;
行驶的时间缩小,路程也随着缩小。
小结:
路程和时间是两种相关联的量,时间变化,路程也随着变化。
3.引导学生进一步观察表中的数据,启发学生从“变化”中去寻找“不变”。
学生可能会从不同的角度去寻找规律。
教师可根据交流的实际情况,及时引导学生通过计算确认这一规律,并有意识地从后一种角度突出这一规律。
如果学生发现不了上述规律,可引导学生写出几组相对应的路程与时间的比,并求出比值。
4.根据上面发现的规律,进一步启发学生思考:
根据学生的回答,教师板书关系式:
时间=速度(一定)
5.教师对两种量之间的关系作具体说明:
当路程和对应时间的比的比值总是一定,也就是速度一定时,行驶的路程和时间成正比例,行驶的路程和时间是成正比例的量。
(板书:
路程和时间成正比例)
二、教学“试一试”
1.要求学生根据表中的已知条件先把表格填写完整。
3.让学生根据板书完整地说一说铅笔的总价和数量成什么关系。
三、抽象表达正比例的意义
1.引导学生观察上面的两个例子,说说它们有什么共同点。
正比例关系可以用怎样的式子来表示?
根据学生的回答,板书关系式:
y/x=k
四、巩固练习
1.完成第63页的“练一练”。
2.做练习十三第1~3题。
五、全课小结
这节课你学会了什么?
通过这节课的学习,你还有哪些收获?
板书设计:
路程和时间成正比例
教学反思:
正比例图像
教科书第58页例2及“练一练”,第60页练习十4-5题。
1.使学生初步理解图像上点所表示的实际意义,即每个点都表示路程和时间的一组相对应的数值。
2.借助直观的图像,帮助学生进一步认识成正比例量的变化规律,初步体会正比例图像的实际应用,为今后学习函数及函数图像等知识打下一定的基础。
3.培养学生的动手操作能力和观察能力。
理解图像上点所表示的实际意义,明确每个点都表示路程和时间的一组相对应的数值。
认识成正比例量的变化规律。
1.初步理解图像上点所表示的实际意义,即每个点都表示路程和时间的一组相对应的数值。
2.借助直观的图像,进一步认识成正比例量的变化规律,初步体会正比例图像的实际应用。
3.培养动手操作能力和观察能力。
学习例2
1、按照要求描出表中的其他点。
2、观察这些点的排布规律,用直线连接。
3、根据图像回答下列问题:
(1)图中的A点表示1小时行80千米,B点表示5小时行400千米,其他点呢?
(2)图中所描的点在一条直线上吗?
(3)根据图像判断,这辆汽车2.5小时行驶多少千米?
行驶440千米需要多少小时?
4、行驶440千米需要多少小时?
让学生说说怎样计算,指名板演。
巩固练习
1.完成“练一练”。
(1)根据表中数据判断两种量是否成正比例。
(2)用描点法画出表中两种量的正比例图像。
(3)利用图像进行估计,体会正比例图像的意义和作用。
2.练习十三第4、5题
第4题的第
(1)题,可以根据图像的特点来说明判断理由,也可以从图像上选取几个点,根据这些点所表示的路程与时间分别求出比值,再作判断。
第4题的第
(2)题,根据图像进行估计
第5题
1、先独立完成,组织交流帮进一步明确方法,加深认识。
2、再提出一些类似的问题,并进行解答。
一、教学例2
出示例1的表格和已标出纵轴、横轴以及相关信息的方格图。
1.师先示范描点(一两个),生按照要求描出表中的其他点。
2.引导学生观察这些点的排布规律,用直线连接。
3.根据图像回答问题:
4.对刚才的第(3)个小问题进行指导。
(师边演示边讲解)
(1)先在纵轴上找到表示2.5小时的点,并从这点起作纵轴的平行线,与已知图像相交与一点。
(2)再从交点起作横轴的平行线,与纵轴相交得到一点。
(3)最后依据与纵轴的交点进行估计。
(4)行驶440千米让学生独立完成,指名板演。
二、巩固练习
三、全课小结
反比例意义
第61—62页的例3和“试一试”,“练一练”和练习十一的第1—3题。
1.使学生经历从具体实例中认识成反比例的量的过程,初步理解反比例的意义,学会根据反比例的意义判断两种相关联的量是不是成反比例。
2.使学生在认识成反比例的量的过程中,体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。
3.使学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。
认识成反比例的量的过程,初步理解反比例的意义。
学会根据反比例的意义判断两种相关联的量是不是成反比例。
1.经历从具体实例中认识成反比例的量的过程,初步理解反比例的意义,学会根据反比例的意义判断两种相关联的量是不是成反比例。
2.在认识成反比例的量的过程中,体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。
3.进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。
自学教材第61—62页的例3
1、你能尝试解释说明什么是反比例么?
2、张师傅2小时生产120个零件,他的工作效率和工作时间成反比例关系么?
2、观察表中的数据,说一说这两种量的数值分别是怎样变化的。
先让同桌相互说一说,再组织全班交流。
3、找一找这两种量的变化的规律,启发学生从“变化”中去寻找“不变”。
4.根据上面发现的规律,学生思考:
“试一试”
2.根据表中的数据,依次讨论表格下面的三个问题,并仿照例3作适当的板书。
2.如果用字母x和y分别表示两种相关联的量,用k表示它们的积,反比例关系可以用怎样的式子来表示?
1.“练一练”。
先让学生独立思考并作出判断,再要求说明判断理由。
2.练习十三第6~8题。
6、7题按题目要求先算一算、想一想,再讨论交流。
完整地说出判断两种量是否成反比例的思考过程。
第8题
填好表格后,组织学生讨论。
1.谈话引出例3的表格,让学生说一说表中列出了哪两种量。
单价扩大,数量反而缩小;
单价缩小,数量反而扩大。
数量和单价是两种相关联的量,单价变化,数量也随着变化。
3.引导学生进一步观察表中的数据,找一找这两种量的变化的规律,启发学生从“变化”中去寻找“不变”。
根据交流的实际情况,引导学生通过计算确认这一规律,并有意识地从后一种角度突出这一规律。
或引导学生写出几组相对应的路程与时间的比,并求出比值。
数量×
单价=总价(一定)
当单价和对应数量的积总是一定,也就是总价一定时,单价和数量成反比例,单价和