连续重整再生放空烟气氯吸附技术与碱洗技术的比较文档格式.docx

上传人:b****3 文档编号:15792617 上传时间:2022-11-16 格式:DOCX 页数:12 大小:136.31KB
下载 相关 举报
连续重整再生放空烟气氯吸附技术与碱洗技术的比较文档格式.docx_第1页
第1页 / 共12页
连续重整再生放空烟气氯吸附技术与碱洗技术的比较文档格式.docx_第2页
第2页 / 共12页
连续重整再生放空烟气氯吸附技术与碱洗技术的比较文档格式.docx_第3页
第3页 / 共12页
连续重整再生放空烟气氯吸附技术与碱洗技术的比较文档格式.docx_第4页
第4页 / 共12页
连续重整再生放空烟气氯吸附技术与碱洗技术的比较文档格式.docx_第5页
第5页 / 共12页
点击查看更多>>
下载资源
资源描述

连续重整再生放空烟气氯吸附技术与碱洗技术的比较文档格式.docx

《连续重整再生放空烟气氯吸附技术与碱洗技术的比较文档格式.docx》由会员分享,可在线阅读,更多相关《连续重整再生放空烟气氯吸附技术与碱洗技术的比较文档格式.docx(12页珍藏版)》请在冰豆网上搜索。

连续重整再生放空烟气氯吸附技术与碱洗技术的比较文档格式.docx

图2氯吸附技术工艺流程简图

从上述两种技术的工艺流程可以看出,氯吸附技术明显比碱洗技术流程简单得多,操作维护起来更加简便。

4主要设备的变化

4.1分离料斗

与碱洗技术相比,采用氯吸附技术时分离料斗结构的变化主要是:

a.分离料斗下部需设置氯吸附区,以保证再生放空气与待生催化剂有足够的接触空间和时间;

b.

分离料斗中部需设置预热区,以保证向下流动的催化剂的温度不致于过低。

如图3所示:

A型和B型结构分离料斗适用于碱洗技术;

C型结构分离料斗适用于氯吸附技术。

图3分离料斗结构简图

国内采用A型结构分离料斗的装置有:

镇海100万吨/年重整装置、茂名100万吨/年重整装置和金陵100万吨/年重整装置等,该结构重整催化剂的一次装入量较少,现已很少采用;

采用B型结构的装置(或工艺包)有:

永坪80万吨/年重整装置、青岛丽东100万吨/年重整装置和青岛大炼油150万吨/年重整装置等,该结构与A型相比增加了重整催化剂的一次装入量和分离料斗的设备重量,受分离料斗长度的变化,再生构架稍有提高;

采用C型分离料斗结构的典型装置(或工艺包)有:

大连220万吨/年重整装置、天津100万吨/年重整装置和惠州200万吨/年重整装置等,采用该结构完全是为了适应再生放空气(RVG)氯吸附技术。

4.2再生器

采用氯吸附技术后,再生器结构的变化主要是:

再生器顶部增加了烧焦段入口的挡板,用于分割至分离料斗和再生气空冷器的两股再生烟气;

再生器下部结构没有变化,详见图4:

图3再生器顶部结构对比

4.3其它设备

由于采用再生放空气(RVG)氯吸附技术,其它设备的变化详见表2:

表2碱洗技术和氯吸附技术设备变化比较表

项目

碱洗技术

再生放空气(RVG)氯吸附技术

空气预热器

——

放空气冷却器

预热器加热器

再生空冷器风机

由于提供部分空气用于放空气冷却,该风机流量需要及压差均需要提高。

放空气洗涤塔

碱液循环泵

碱液冷却器

注碱泵

注碱罐

注水泵

注水罐

设备台数合计

8

4

5投资及经济效益对比

投资对比见表3。

操作成本对比见表4。

公用工程消耗及能耗见表5。

表3重整装置再生放空气处理技术方案投资对比

单位

青岛大炼油

天津石化

大连石化

重整规模

万吨/年

150

100

220

再生规模

磅/h

3000

2000

4500

再生放空气处理技术

碱洗

氯吸附

(一)设备投资

静设备

万元

136

69

83

51

设备投资小计

185

单位投资

万元/(磅/h)

0.0615

0.0345

0.0185

相对比例

100

56

30

(二)催化剂投资

重整催化剂

吨/次

万元/吨

11.75

×

130

9.22

24.12

催化剂投资

1528

1199

3136

石墨拉稀环

立方米/次

4.4

9.8

石墨拉稀环投资

43

催化剂投资小计

1571

0.5237

0.5995

0.6969

114

133

(三)投资合计

合计投资

1756

1268

3219

合计单位投资

0.5853

0.6340

0.7153

合计相对比例

108

122

表4重整装置再生放空气处理技术方案操作成本对比

四氯乙烯

吨/年

33.5

3.1

8.9

21.1

碱液

77

0.07

成本合计

万元/年

109.24

27.59

65.41

单位成本

0.0364

0.0138

0.0145

成本相对比例

38

40

表5重整装置催化剂再生单元公用工程消耗及能耗对比

镇海石化

100万吨/年

150万吨/年

220万吨/年

循环水

T/h

22

25.5

除盐水

1.03

1.56

除氧水

0.09

kW

923

1222

852

1609

1.0MPa蒸汽

0.17

0.3

0.33

1.37

凝结水

-0.17

-0.3

-0.33

-1.37

氮气

Nm3/h

72

72.1

68

仪表风

771

1156

793

1652

基于再生规模能耗

标油/磅

0.159

0.142

0.153

0.138

从表3、表4及表5对比结果可以看出:

a)与碱洗技术相比,采用氯吸附技术时设备投资节省,但由于催化剂投资增加较多(由于分离料斗中重整催化剂的藏量需要增加),使再生气放空处理部分投资增加约10%;

b)与碱洗技术相比,采用氯吸附技术时所需注入的化学药剂成本节省约60%;

c)再生放空气(RVG)氯吸附技术对催化剂再生单元能耗影响不大。

6环保指标

尽管再生放空气(RVG)氯吸附技术已经成功应用到了多套连续重整装置中,但是UOP公司对氯吸附技术的使用效果(即HCl回收率或放空气中的HCl含量)不能同时保证,仅对HCl回收率进行保证(≮97%)。

国内重整装置按照《中华人民共和国国家标准环境空气质量标准》GB3095-1996规定,对于HCl气体的排放有明确的规定,包括排放废气的最高允许浓度和根据排气筒高度确定的最高允许排放速率均不得超标排放,详见表6。

根据表7中两套重整装置再生烟气的组成设计值可以得出,当HCl的回收率为97%时,再生放空气中HCl的含量稍低于新污染源最高允许排放浓度100mg/m3(75ppmv),可以满足GB3095-1996要求。

表6GB3095-1996对HCl排放限值

现有污染源大气污染物排放限值

新污染源大气污染物排放限值

最高允

许排放

浓度

mg/m3

最高允许排放速率

Kg/h

无组织排放监控浓度限值

最高允许排放浓度

排气筒

M

一级

二级

三级

监控

15

20

50

60

70

80

禁排

0.30

0.51

1.70

3.00

4.50

6.40

9.10

12

0.46

0.77

2.6

4.5

6.9

14

19

周界外浓度最高点

0.25

0.26

0.43

1.4

3.8

5.4

7.7

10

0.39

0.65

2.2

5.9

8.3

16

0.20

表7再生烟气组成比较

放空气摩尔流量

Kmol/h

24.09

54.70

排放点设计高度

m

75

96

预计排放浓度

环保指标

ppmv

67

≤75

66

预计排放速率

0.049

≤7.7

0.108

≤10

7结论

通过对工艺流程、工艺设备、投资、能耗及环境保护各方面的对比分析,采用再生放空气(RVG)氯吸附技术与碱洗技术相比具有以下优缺点:

a)氯吸附技术工艺流程简单,操作维护更加方便。

b)氯吸附技术不消耗碱液,也无需废碱处理,避免了碱洗系统的腐蚀或泄露导致的催化剂再生单元的停车,提高了开工效率。

c)采用氯吸附技术时尽管设备投资节省,但由于分离料斗中重整催化剂的藏量需要增加,使得再生气放空处理部分总投资增加。

d)采用氯吸附技术时所需注入的化学药剂成本较省,对催化剂再生单元能耗影响不大。

c)采用再生放空气(RVG)氯吸附技术并且HCl的回收率达到97%时,放空气可以满足国标环保要求。

国内采用再生放空气(RVG)氯吸附技术的重整装置均没有开工,该技术

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 医药卫生 > 基础医学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1